
SysXCHG
Refining Privilege with Adaptive System Call Filters

Alexander J. Gaidis Vaggelis Atlidakis Vasileios P. Kemerlis

Secure Systems Laboratory (SSL)
Department of Computer Science
Brown University

agaidis@cs.brown.edu (Brown University) SysXCHG CCS 2023 0 / 14

mailto:agaidis@cs.brown.edu
https://cs.brown.edu

Motivation

Syscall Filtering Motivation

Y Syscall filtering attempts to limit over-privilege w.r.t. the syscall API

Y Seccomp-BPF is the de facto filtering mechanism in Linux
Y Users install BPF programs at a hook-point in the kernel to filter syscalls
Y All filter programs are run and the most restrictive action is taken

S Filters can block allowed syscalls, but cannot allow blocked syscalls

agaidis@cs.brown.edu (Brown University) SysXCHG CCS 2023 1 / 14

mailto:agaidis@cs.brown.edu
https://cs.brown.edu

Syscall Filtering Motivation

Y Syscall filtering attempts to limit over-privilege w.r.t. the syscall API
Y Seccomp-BPF is the de facto filtering mechanism in Linux

Y Users install BPF programs at a hook-point in the kernel to filter syscalls
Y All filter programs are run and the most restrictive action is taken

S Filters can block allowed syscalls, but cannot allow blocked syscalls

agaidis@cs.brown.edu (Brown University) SysXCHG CCS 2023 1 / 14

mailto:agaidis@cs.brown.edu
https://cs.brown.edu

Syscall Filtering Motivation

Y Syscall filtering attempts to limit over-privilege w.r.t. the syscall API
Y Seccomp-BPF is the de facto filtering mechanism in Linux
Y Users install BPF programs at a hook-point in the kernel to filter syscalls

Y All filter programs are run and the most restrictive action is taken
S Filters can block allowed syscalls, but cannot allow blocked syscalls

agaidis@cs.brown.edu (Brown University) SysXCHG CCS 2023 1 / 14

mailto:agaidis@cs.brown.edu
https://cs.brown.edu

Syscall Filtering Motivation

Y Syscall filtering attempts to limit over-privilege w.r.t. the syscall API
Y Seccomp-BPF is the de facto filtering mechanism in Linux
Y Users install BPF programs at a hook-point in the kernel to filter syscalls
Y All filter programs are run and the most restrictive action is taken

S Filters can block allowed syscalls, but cannot allow blocked syscalls

agaidis@cs.brown.edu (Brown University) SysXCHG CCS 2023 1 / 14

mailto:agaidis@cs.brown.edu
https://cs.brown.edu

Seccomp-BPF Problem #1: Effectiveness Motivation

Seccomp-BPF has a hierarchical design that leads to over-privilege

agaidis@cs.brown.edu (Brown University) SysXCHG CCS 2023 2 / 14

mailto:agaidis@cs.brown.edu
https://cs.brown.edu

Seccomp-BPF Problem #1: Effectiveness Motivation

Seccomp-BPF has a hierarchical design that leads to over-privilege

Y Filters are inherited across process creation and program execution

Y A process’ privileges can never grow
Y A program must allow the syscalls needed by any sub-programs ⇝ over-privilege

S Some binaries must run with twice as many syscalls as necessary

Proc X

A
Prog

SA + SB + SC
Allowed Syscalls

Over-privilege of A: SB + SC

Proc X

B
Prog

SB + SC
Allowed Syscalls

Over-privilege of B: SC

Proc X

C
Prog

SC
Allowed Syscalls

Over-privilege of C: ∅

execve(B)

execve(C)

agaidis@cs.brown.edu (Brown University) SysXCHG CCS 2023 2 / 14

mailto:agaidis@cs.brown.edu
https://cs.brown.edu

Seccomp-BPF Problem #1: Effectiveness Motivation

Seccomp-BPF has a hierarchical design that leads to over-privilege

Y Filters are inherited across process creation and program execution
Y A process’ privileges can never grow

Y A program must allow the syscalls needed by any sub-programs ⇝ over-privilege
S Some binaries must run with twice as many syscalls as necessary

Proc X

A
Prog

SA + SB + SC
Allowed Syscalls

Over-privilege of A: SB + SC

Proc X

B
Prog

SB + SC
Allowed Syscalls

Over-privilege of B: SC

Proc X

C
Prog

SC
Allowed Syscalls

Over-privilege of C: ∅

execve(B)

execve(C)

agaidis@cs.brown.edu (Brown University) SysXCHG CCS 2023 2 / 14

mailto:agaidis@cs.brown.edu
https://cs.brown.edu

Seccomp-BPF Problem #1: Effectiveness Motivation

Seccomp-BPF has a hierarchical design that leads to over-privilege

Y Filters are inherited across process creation and program execution
Y A process’ privileges can never grow
Y A program must allow the syscalls needed by any sub-programs ⇝ over-privilege

S Some binaries must run with twice as many syscalls as necessary

Proc X

A
Prog

SA + SB + SC
Allowed Syscalls

Over-privilege of A: SB + SC

Proc X

B
Prog

SB + SC
Allowed Syscalls

Over-privilege of B: SC

Proc X

C
Prog

SC
Allowed Syscalls

Over-privilege of C: ∅

execve(B)

execve(C)

agaidis@cs.brown.edu (Brown University) SysXCHG CCS 2023 2 / 14

mailto:agaidis@cs.brown.edu
https://cs.brown.edu

Seccomp-BPF Problem #1: Effectiveness Motivation

Seccomp-BPF has a hierarchical design that leads to over-privilege

Exchange filters at runtime to adapt a process’ privileges to the current program

agaidis@cs.brown.edu (Brown University) SysXCHG CCS 2023 2 / 14

mailto:agaidis@cs.brown.edu
https://cs.brown.edu

Seccomp-BPF Problem #2: Performance Motivation

Seccomp-BPF improves runtime filtering performance by sacrificing install performance

agaidis@cs.brown.edu (Brown University) SysXCHG CCS 2023 3 / 14

mailto:agaidis@cs.brown.edu
https://cs.brown.edu

Seccomp-BPF Problem #2: Performance Motivation

Seccomp-BPF improves runtime filtering performance by sacrificing install performance

Y Most recent work filters syscalls based solely on number

Y A bitmap cache was recently added to Seccomp-BPF to speedup enforcement
Y Cache is created from a filter by repeatedly emulating the filter for individual syscalls

S The cache slows installation up to 3.5x

Y The syscall hot path still requires multiple function calls to test the cache

agaidis@cs.brown.edu (Brown University) SysXCHG CCS 2023 3 / 14

mailto:agaidis@cs.brown.edu
https://cs.brown.edu

Seccomp-BPF Problem #2: Performance Motivation

Seccomp-BPF improves runtime filtering performance by sacrificing install performance

Y Most recent work filters syscalls based solely on number
Y A bitmap cache was recently added to Seccomp-BPF to speedup enforcement

Y Cache is created from a filter by repeatedly emulating the filter for individual syscalls

S The cache slows installation up to 3.5x

Y The syscall hot path still requires multiple function calls to test the cache

agaidis@cs.brown.edu (Brown University) SysXCHG CCS 2023 3 / 14

mailto:agaidis@cs.brown.edu
https://cs.brown.edu

Seccomp-BPF Problem #2: Performance Motivation

Seccomp-BPF improves runtime filtering performance by sacrificing install performance

Y Most recent work filters syscalls based solely on number
Y A bitmap cache was recently added to Seccomp-BPF to speedup enforcement
Y Cache is created from a filter by repeatedly emulating the filter for individual syscalls

S The cache slows installation up to 3.5x
Y The syscall hot path still requires multiple function calls to test the cache

agaidis@cs.brown.edu (Brown University) SysXCHG CCS 2023 3 / 14

mailto:agaidis@cs.brown.edu
https://cs.brown.edu

Seccomp-BPF Problem #2: Performance Motivation

Seccomp-BPF improves runtime filtering performance by sacrificing install performance

Y Most recent work filters syscalls based solely on number
Y A bitmap cache was recently added to Seccomp-BPF to speedup enforcement
Y Cache is created from a filter by repeatedly emulating the filter for individual syscalls

S The cache slows installation up to 3.5x

Y The syscall hot path still requires multiple function calls to test the cache

agaidis@cs.brown.edu (Brown University) SysXCHG CCS 2023 3 / 14

mailto:agaidis@cs.brown.edu
https://cs.brown.edu

Seccomp-BPF Problem #2: Performance Motivation

Seccomp-BPF improves runtime filtering performance by sacrificing install performance

Y Most recent work filters syscalls based solely on number
Y A bitmap cache was recently added to Seccomp-BPF to speedup enforcement
Y Cache is created from a filter by repeatedly emulating the filter for individual syscalls

S The cache slows installation up to 3.5x
Y The syscall hot path still requires multiple function calls to test the cache

agaidis@cs.brown.edu (Brown University) SysXCHG CCS 2023 3 / 14

mailto:agaidis@cs.brown.edu
https://cs.brown.edu

Seccomp-BPF Problem #2: Performance Motivation

Seccomp-BPF improves runtime filtering performance by sacrificing install performance

Pre-compute filters and give each process its own view of the syscall table for filtering

agaidis@cs.brown.edu (Brown University) SysXCHG CCS 2023 3 / 14

mailto:agaidis@cs.brown.edu
https://cs.brown.edu

SysXCHG Design

Filtering Models SysXCHG Design

Inheritance Model:
S “Legacy” model of Seccomp-BPF
S Filters cannot be uninstalled
S Filters are inherited across execve
S Privileges can never grow
S Programs can be over-privileged

Proc X

A
Prog

SA + SB + SC
Allowed Syscalls

Proc X

B
Prog

SB + SC
Allowed Syscalls

Proc X

C
Prog

SC
Allowed Syscalls

execve(B)

execve(C)

Exchange Model:
S Novel model we propose
S Filters can be replaced
S Filters aren’t inherited across execve
S Privileges adapt to current program
S Programs are not over-privileged

Proc X

A
Prog

SA
Allowed Syscalls

Proc X

B
Prog

SB
Allowed Syscalls

Proc X

C
Prog

SC
Allowed Syscalls

execve(B)

execve(C)

agaidis@cs.brown.edu (Brown University) SysXCHG CCS 2023 4 / 14

mailto:agaidis@cs.brown.edu
https://cs.brown.edu

Filtering Models SysXCHG Design

Inheritance Model:
S “Legacy” model of Seccomp-BPF
S Filters cannot be uninstalled
S Filters are inherited across execve
S Privileges can never grow
S Programs can be over-privileged

Proc X

A
Prog

SA + SB + SC
Allowed Syscalls

Proc X

B
Prog

SB + SC
Allowed Syscalls

Proc X

C
Prog

SC
Allowed Syscalls

execve(B)

execve(C)

Exchange Model:
S Novel model we propose
S Filters can be replaced
S Filters aren’t inherited across execve
S Privileges adapt to current program
S Programs are not over-privileged

Proc X

A
Prog

SA
Allowed Syscalls

Proc X

B
Prog

SB
Allowed Syscalls

Proc X

C
Prog

SC
Allowed Syscalls

execve(B)

execve(C)

agaidis@cs.brown.edu (Brown University) SysXCHG CCS 2023 4 / 14

mailto:agaidis@cs.brown.edu
https://cs.brown.edu

exec Filters SysXCHG Design

exec filters are a mechanism to link filters with binaries to enable secure filter exchanging

Y exec filters are embedded in binaries and automatically installed on execution
Y Prepared (offline) by:

1. Extracting the set of syscalls needed for a binary’s benign execution
2. Embedding a filter program in a new ELF section

Y We do not depend on specific tools for extraction and embedding
Y Agnostic to the underlying filter type

lib*.so

...

.text

.dynamic

.data

...

ELF

.filter

1. extract

2. embed

[0, 1, 2, ..., 293]

agaidis@cs.brown.edu (Brown University) SysXCHG CCS 2023 5 / 14

mailto:agaidis@cs.brown.edu
https://cs.brown.edu

exec Filters SysXCHG Design

exec filters are a mechanism to link filters with binaries to enable secure filter exchanging

Y exec filters are embedded in binaries and automatically installed on execution

Y Prepared (offline) by:

1. Extracting the set of syscalls needed for a binary’s benign execution
2. Embedding a filter program in a new ELF section

Y We do not depend on specific tools for extraction and embedding
Y Agnostic to the underlying filter type

lib*.so

...

.text

.dynamic

.data

...

ELF

.filter

1. extract

2. embed

[0, 1, 2, ..., 293]

agaidis@cs.brown.edu (Brown University) SysXCHG CCS 2023 5 / 14

mailto:agaidis@cs.brown.edu
https://cs.brown.edu

exec Filters SysXCHG Design

exec filters are a mechanism to link filters with binaries to enable secure filter exchanging

Y exec filters are embedded in binaries and automatically installed on execution
Y Prepared (offline) by:

1. Extracting the set of syscalls needed for a binary’s benign execution
2. Embedding a filter program in a new ELF section

Y We do not depend on specific tools for extraction and embedding
Y Agnostic to the underlying filter type

lib*.so

...

.text

.dynamic

.data

...

ELF

.filter

1. extract

2. embed

[0, 1, 2, ..., 293]

agaidis@cs.brown.edu (Brown University) SysXCHG CCS 2023 5 / 14

mailto:agaidis@cs.brown.edu
https://cs.brown.edu

exec Filters SysXCHG Design

exec filters are a mechanism to link filters with binaries to enable secure filter exchanging

Y exec filters are embedded in binaries and automatically installed on execution
Y Prepared (offline) by:

1. Extracting the set of syscalls needed for a binary’s benign execution

2. Embedding a filter program in a new ELF section
Y We do not depend on specific tools for extraction and embedding
Y Agnostic to the underlying filter type

lib*.so

...

.text

.dynamic

.data

...

ELF

.filter

1. extract

2. embed

[0, 1, 2, ..., 293]

agaidis@cs.brown.edu (Brown University) SysXCHG CCS 2023 5 / 14

mailto:agaidis@cs.brown.edu
https://cs.brown.edu

exec Filters SysXCHG Design

exec filters are a mechanism to link filters with binaries to enable secure filter exchanging

Y exec filters are embedded in binaries and automatically installed on execution
Y Prepared (offline) by:

1. Extracting the set of syscalls needed for a binary’s benign execution
2. Embedding a filter program in a new ELF section

Y We do not depend on specific tools for extraction and embedding
Y Agnostic to the underlying filter type

lib*.so

...

.text

.dynamic

.data

...

ELF

.filter

1. extract

2. embed

[0, 1, 2, ..., 293]

agaidis@cs.brown.edu (Brown University) SysXCHG CCS 2023 5 / 14

mailto:agaidis@cs.brown.edu
https://cs.brown.edu

exec Filters SysXCHG Design

exec filters are a mechanism to link filters with binaries to enable secure filter exchanging

Y exec filters are embedded in binaries and automatically installed on execution
Y Prepared (offline) by:

1. Extracting the set of syscalls needed for a binary’s benign execution
2. Embedding a filter program in a new ELF section

Y We do not depend on specific tools for extraction and embedding

Y Agnostic to the underlying filter type

lib*.so

...

.text

.dynamic

.data

...

ELF

.filter

1. extract

2. embed

[0, 1, 2, ..., 293]

agaidis@cs.brown.edu (Brown University) SysXCHG CCS 2023 5 / 14

mailto:agaidis@cs.brown.edu
https://cs.brown.edu

exec Filters SysXCHG Design

exec filters are a mechanism to link filters with binaries to enable secure filter exchanging

Y exec filters are embedded in binaries and automatically installed on execution
Y Prepared (offline) by:

1. Extracting the set of syscalls needed for a binary’s benign execution
2. Embedding a filter program in a new ELF section

Y We do not depend on specific tools for extraction and embedding
Y Agnostic to the underlying filter type

lib*.so

...

.text

.dynamic

.data

...

ELF

.filter

1. extract

2. embed

[0, 1, 2, ..., 293]

agaidis@cs.brown.edu (Brown University) SysXCHG CCS 2023 5 / 14

mailto:agaidis@cs.brown.edu
https://cs.brown.edu

Filter Exchanging SysXCHG Design

Adapt privileges to the running program by dynamically exchanging exec filters

Y Replace installed exec filters upon program execution

S exec filters work on a program level

Y Manually installed filters adhere to the inheritance model

S Manual filters work on a process level

Proc X

A
Prog

SA
Allowed Syscalls

Proc X

B
Prog

SB
Allowed Syscalls

execve(B)

Proc X

C
Prog

SC
Allowed Syscalls

execve(C)

agaidis@cs.brown.edu (Brown University) SysXCHG CCS 2023 6 / 14

mailto:agaidis@cs.brown.edu
https://cs.brown.edu

Filter Exchanging SysXCHG Design

Adapt privileges to the running program by dynamically exchanging exec filters

Y Replace installed exec filters upon program execution

S exec filters work on a program level
Y Manually installed filters adhere to the inheritance model

S Manual filters work on a process level

Proc X

A
Prog

SA
Allowed Syscalls

Proc X

B
Prog

SB
Allowed Syscalls

execve(B)

Proc X

C
Prog

SC
Allowed Syscalls

execve(C)

agaidis@cs.brown.edu (Brown University) SysXCHG CCS 2023 6 / 14

mailto:agaidis@cs.brown.edu
https://cs.brown.edu

Filter Exchanging SysXCHG Design

Adapt privileges to the running program by dynamically exchanging exec filters

Y Replace installed exec filters upon program execution

S exec filters work on a program level
Y Manually installed filters adhere to the inheritance model

S Manual filters work on a process level

Proc X

A
Prog

SA
Allowed Syscalls

Proc X

B
Prog

SB
Allowed Syscalls

execve(B)

Proc X

C
Prog

SC
Allowed Syscalls

execve(C)

agaidis@cs.brown.edu (Brown University) SysXCHG CCS 2023 6 / 14

mailto:agaidis@cs.brown.edu
https://cs.brown.edu

Filter Exchanging SysXCHG Design

Adapt privileges to the running program by dynamically exchanging exec filters

Y Replace installed exec filters upon program execution

S exec filters work on a program level
Y Manually installed filters adhere to the inheritance model

S Manual filters work on a process level

Proc X

A
Prog

SA
Allowed Syscalls

Proc X

B
Prog

SB
Allowed Syscalls

execve(B)

Proc X

C
Prog

SC
Allowed Syscalls

execve(C)

agaidis@cs.brown.edu (Brown University) SysXCHG CCS 2023 6 / 14

mailto:agaidis@cs.brown.edu
https://cs.brown.edu

Filter Exchanging SysXCHG Design

Adapt privileges to the running program by dynamically exchanging exec filters

Y Replace installed exec filters upon program execution

S exec filters work on a program level
Y Manually installed filters adhere to the inheritance model

S Manual filters work on a process level

Proc X

A
Prog

SA
Allowed Syscalls

Proc X

B
Prog

SB
Allowed Syscalls

execve(B)

Proc X

C
Prog

SC
Allowed Syscalls

execve(C)

agaidis@cs.brown.edu (Brown University) SysXCHG CCS 2023 6 / 14

mailto:agaidis@cs.brown.edu
https://cs.brown.edu

Filter Exchanging SysXCHG Design

Adapt privileges to the running program by dynamically exchanging exec filters

Y Replace installed exec filters upon program execution
S exec filters work on a program level

Y Manually installed filters adhere to the inheritance model

S Manual filters work on a process level

Proc X

A
Prog

SA
Allowed Syscalls

Proc X

B
Prog

SB
Allowed Syscalls

execve(B)

Proc X

C
Prog

SC
Allowed Syscalls

execve(C)

agaidis@cs.brown.edu (Brown University) SysXCHG CCS 2023 6 / 14

mailto:agaidis@cs.brown.edu
https://cs.brown.edu

Filter Exchanging SysXCHG Design

Adapt privileges to the running program by dynamically exchanging exec filters

Y Replace installed exec filters upon program execution
S exec filters work on a program level

Y Manually installed filters adhere to the inheritance model

S Manual filters work on a process level

Proc X

A
Prog

SA
Allowed Syscalls

Proc X

B
Prog

SB
Allowed Syscalls

execve(B)

Proc X

C
Prog

SC
Allowed Syscalls

execve(C)

agaidis@cs.brown.edu (Brown University) SysXCHG CCS 2023 6 / 14

mailto:agaidis@cs.brown.edu
https://cs.brown.edu

Filter Exchanging SysXCHG Design

Adapt privileges to the running program by dynamically exchanging exec filters

Y Replace installed exec filters upon program execution
S exec filters work on a program level

Y Manually installed filters adhere to the inheritance model
S Manual filters work on a process level

Proc X

A
Prog

SA
Allowed Syscalls

Proc X

B
Prog

SB
Allowed Syscalls

execve(B)

Proc X

C
Prog

SC
Allowed Syscalls

execve(C)

agaidis@cs.brown.edu (Brown University) SysXCHG CCS 2023 6 / 14

mailto:agaidis@cs.brown.edu
https://cs.brown.edu

Security Considerations SysXCHG Design

Cryptographic signatures bind exec filters to binaries to prevent malicious privilege increase

Y Exchanging filters could allow an adversary to increase their privileges by:

i. Creating a new program with no exec filter and executing it
ii. Modifying a binary’s existing exec filter and executing it

Y A final (offline) phase:
3. Signing with Linux’s IMA security module

lib*.so

...

.text

.dynamic

.data

...

<signature>

xattr

ELF

.filter

1. extract

2. embed

3. sign

[0, 1, 2, ..., 293]

agaidis@cs.brown.edu (Brown University) SysXCHG CCS 2023 7 / 14

mailto:agaidis@cs.brown.edu
https://cs.brown.edu

Security Considerations SysXCHG Design

Cryptographic signatures bind exec filters to binaries to prevent malicious privilege increase

Y Exchanging filters could allow an adversary to increase their privileges by:

i. Creating a new program with no exec filter and executing it
ii. Modifying a binary’s existing exec filter and executing it

Y A final (offline) phase:
3. Signing with Linux’s IMA security module

lib*.so

...

.text

.dynamic

.data

...

<signature>

xattr

ELF

.filter

1. extract

2. embed

3. sign

[0, 1, 2, ..., 293]

agaidis@cs.brown.edu (Brown University) SysXCHG CCS 2023 7 / 14

mailto:agaidis@cs.brown.edu
https://cs.brown.edu

Security Considerations SysXCHG Design

Cryptographic signatures bind exec filters to binaries to prevent malicious privilege increase

Y Exchanging filters could allow an adversary to increase their privileges by:
i. Creating a new program with no exec filter and executing it

ii. Modifying a binary’s existing exec filter and executing it
Y A final (offline) phase:

3. Signing with Linux’s IMA security module

lib*.so

...

.text

.dynamic

.data

...

<signature>

xattr

ELF

.filter

1. extract

2. embed

3. sign

[0, 1, 2, ..., 293]

agaidis@cs.brown.edu (Brown University) SysXCHG CCS 2023 7 / 14

mailto:agaidis@cs.brown.edu
https://cs.brown.edu

Security Considerations SysXCHG Design

Cryptographic signatures bind exec filters to binaries to prevent malicious privilege increase

Y Exchanging filters could allow an adversary to increase their privileges by:
i. Creating a new program with no exec filter and executing it
ii. Modifying a binary’s existing exec filter and executing it

Y A final (offline) phase:
3. Signing with Linux’s IMA security module

lib*.so

...

.text

.dynamic

.data

...

<signature>

xattr

ELF

.filter

1. extract

2. embed

3. sign

[0, 1, 2, ..., 293]

agaidis@cs.brown.edu (Brown University) SysXCHG CCS 2023 7 / 14

mailto:agaidis@cs.brown.edu
https://cs.brown.edu

Security Considerations SysXCHG Design

Cryptographic signatures bind exec filters to binaries to prevent malicious privilege increase

Y Exchanging filters could allow an adversary to increase their privileges by:
i. Creating a new program with no exec filter and executing it
ii. Modifying a binary’s existing exec filter and executing it

Y A final (offline) phase:
3. Signing with Linux’s IMA security module

lib*.so

...

.text

.dynamic

.data

...

<signature>

xattr

ELF

.filter

1. extract

2. embed

3. sign

[0, 1, 2, ..., 293]

agaidis@cs.brown.edu (Brown University) SysXCHG CCS 2023 7 / 14

mailto:agaidis@cs.brown.edu
https://cs.brown.edu

Exchange Example SysXCHG Design

ELF X

...
seccomp(filter);
...
execve(Y);
...

<signature>

xattr

.filter

ELF Y

...

<signature>

xattr

.filter

user space kernel space

exec man

syscall allowed?

IMA

signature OK?

exec man

error

error

yes

no

yes

no

agaidis@cs.brown.edu (Brown University) SysXCHG CCS 2023 8 / 14

mailto:agaidis@cs.brown.edu
https://cs.brown.edu

Exchange Example SysXCHG Design

ELF X

...
seccomp(filter);
...
execve(Y);
...

<signature>

xattr

.filter

ELF Y

...

<signature>

xattr

.filter

user space kernel space

exec man

syscall allowed?

IMA

signature OK?

exec man

error

error

yes

no

yes

no

agaidis@cs.brown.edu (Brown University) SysXCHG CCS 2023 8 / 14

mailto:agaidis@cs.brown.edu
https://cs.brown.edu

Exchange Example SysXCHG Design

ELF X

...
seccomp(filter);
...
execve(Y);
...

<signature>

xattr

.filter

ELF Y

...

<signature>

xattr

.filter

user space kernel space

exec man

syscall allowed?

IMA

signature OK?

exec man

error

error

yes

no

yes

no

agaidis@cs.brown.edu (Brown University) SysXCHG CCS 2023 8 / 14

mailto:agaidis@cs.brown.edu
https://cs.brown.edu

Exchange Example SysXCHG Design

ELF X

...
seccomp(filter);
...
execve(Y);
...

<signature>

xattr

.filter

ELF Y

...

<signature>

xattr

.filter

user space kernel space

exec man

syscall allowed?

IMA

signature OK?

exec man

error

error

yes

no

yes

no

agaidis@cs.brown.edu (Brown University) SysXCHG CCS 2023 8 / 14

mailto:agaidis@cs.brown.edu
https://cs.brown.edu

Exchange Example SysXCHG Design

ELF X

...
seccomp(filter);
...
execve(Y);
...

<signature>

xattr

.filter

ELF Y

...

<signature>

xattr

.filter

user space kernel space

exec man

syscall allowed?

IMA

signature OK?

exec man

error

error

yes

no

yes

no

agaidis@cs.brown.edu (Brown University) SysXCHG CCS 2023 8 / 14

mailto:agaidis@cs.brown.edu
https://cs.brown.edu

Exchange Example SysXCHG Design

ELF X

...
seccomp(filter);
...
execve(Y);
...

<signature>

xattr

.filter

ELF Y

...

<signature>

xattr

.filter

user space kernel space

exec man

syscall allowed?

IMA

signature OK?

exec man

error

error

yes

no

yes

no

agaidis@cs.brown.edu (Brown University) SysXCHG CCS 2023 8 / 14

mailto:agaidis@cs.brown.edu
https://cs.brown.edu

Exchange Example SysXCHG Design

ELF X

...
seccomp(filter);
...
execve(Y);
...

<signature>

xattr

.filter

ELF Y

...

<signature>

xattr

.filter

user space kernel space

exec man

syscall allowed?

IMA

signature OK?

exec man

error

error

yes

no

yes

no

agaidis@cs.brown.edu (Brown University) SysXCHG CCS 2023 8 / 14

mailto:agaidis@cs.brown.edu
https://cs.brown.edu

Exchange Example SysXCHG Design

ELF X

...
seccomp(filter);
...
execve(Y);
...

<signature>

xattr

.filter

ELF Y

...

<signature>

xattr

.filter

user space kernel space

exec man

syscall allowed?

IMA

signature OK?

exec man

error

error

yes

no

yes

no

agaidis@cs.brown.edu (Brown University) SysXCHG CCS 2023 8 / 14

mailto:agaidis@cs.brown.edu
https://cs.brown.edu

Exchange Example SysXCHG Design

ELF X

...
seccomp(filter);
...
execve(Y);
...

<signature>

xattr

.filter

ELF Y

...

<signature>

xattr

.filter

user space kernel space

exec man

syscall allowed?

IMA

signature OK?

exec man

error

error

yes

no

yes

no

agaidis@cs.brown.edu (Brown University) SysXCHG CCS 2023 8 / 14

mailto:agaidis@cs.brown.edu
https://cs.brown.edu

Exchange Example SysXCHG Design

ELF X

...
seccomp(filter);
...
execve(Y);
...

<signature>

xattr

.filter

ELF Y

...

<signature>

xattr

.filter

user space kernel space

exec man

syscall allowed?

IMA

signature OK?

exec man

error

error

yes

no

yes

no

agaidis@cs.brown.edu (Brown University) SysXCHG CCS 2023 8 / 14

mailto:agaidis@cs.brown.edu
https://cs.brown.edu

Exchange Example SysXCHG Design

ELF X

...
seccomp(filter);
...
execve(Y);
...

<signature>

xattr

.filter

ELF Y

...

<signature>

xattr

.filter

user space kernel space

exec man

syscall allowed?

IMA

signature OK?

exec man

error

error

yes

no

yes

no

agaidis@cs.brown.edu (Brown University) SysXCHG CCS 2023 8 / 14

mailto:agaidis@cs.brown.edu
https://cs.brown.edu

Performance Considerations xfilter Design

xfilter: optimize filter installation and runtime performance

Y Processes keep filtered “views” of the syscall table
Y Works with both the inheritance and exchange models
Y Can be used in tandem with Seccomp-BPF

Legacy Design

Global Syscall Table

...

...
Proc Y

...
Proc X

...
Proc Z

xfilter Design
Proc X
Syscall Table View

3 7 7 3 7 3...

Proc Y
Syscall Table View

3 3 3 3 3 3...

Proc Z
Syscall Table View

7 3 3 3 7 7...

agaidis@cs.brown.edu (Brown University) SysXCHG CCS 2023 9 / 14

mailto:agaidis@cs.brown.edu
https://cs.brown.edu

Performance Considerations xfilter Design

xfilter: optimize filter installation and runtime performance

Y Processes keep filtered “views” of the syscall table

Y Works with both the inheritance and exchange models
Y Can be used in tandem with Seccomp-BPF

Legacy Design

Global Syscall Table

...

...
Proc Y

...
Proc X

...
Proc Z

xfilter Design
Proc X
Syscall Table View

3 7 7 3 7 3...

Proc Y
Syscall Table View

3 3 3 3 3 3...

Proc Z
Syscall Table View

7 3 3 3 7 7...

agaidis@cs.brown.edu (Brown University) SysXCHG CCS 2023 9 / 14

mailto:agaidis@cs.brown.edu
https://cs.brown.edu

Performance Considerations xfilter Design

xfilter: optimize filter installation and runtime performance

Y Processes keep filtered “views” of the syscall table
Y Works with both the inheritance and exchange models

Y Can be used in tandem with Seccomp-BPF

Legacy Design

Global Syscall Table

...

...
Proc Y

...
Proc X

...
Proc Z

xfilter Design
Proc X
Syscall Table View

3 7 7 3 7 3...

Proc Y
Syscall Table View

3 3 3 3 3 3...

Proc Z
Syscall Table View

7 3 3 3 7 7...

agaidis@cs.brown.edu (Brown University) SysXCHG CCS 2023 9 / 14

mailto:agaidis@cs.brown.edu
https://cs.brown.edu

Performance Considerations xfilter Design

xfilter: optimize filter installation and runtime performance

Y Processes keep filtered “views” of the syscall table
Y Works with both the inheritance and exchange models
Y Can be used in tandem with Seccomp-BPF

Legacy Design

Global Syscall Table

...

...
Proc Y

...
Proc X

...
Proc Z

xfilter Design
Proc X
Syscall Table View

3 7 7 3 7 3...

Proc Y
Syscall Table View

3 3 3 3 3 3...

Proc Z
Syscall Table View

7 3 3 3 7 7...

agaidis@cs.brown.edu (Brown University) SysXCHG CCS 2023 9 / 14

mailto:agaidis@cs.brown.edu
https://cs.brown.edu

Implementation & Evaluation

Implementation Implementation

We have implemented our backwards-compatible design with minimal LOC

Y Kernel extensions total ≈700 LOC added to:
S Seccomp-BPF infrastructure
S ELF execution/loading code
S prctl syscall
S Syscall handling pathway

Y Userland enforcement framework totals ≈330 lines of Python, Bash, and C
Y Tools used:

1. Extraction: sysfilter to derive a syscall set
2. Embedding: objcopy to embed exec filters
3. Signing: evmctl to sign hardened binaries

agaidis@cs.brown.edu (Brown University) SysXCHG CCS 2023 10 / 14

mailto:agaidis@cs.brown.edu
https://cs.brown.edu

Over-privilege Quantification Effectiveness Evaluation

The exchange model eliminates the over-privilege that results from the inheritance model

Benchmark∗ Depth Root No. Desc. Total Syscalls Over-privilege
Inheritance Exchange Percentage

… … … … … … …
Bell Labs Unix50 1 bash 12 124 84 47.62%
COVID-19 Transit Analytics 1 bash 6 119 84 41.67%
Natural-Language Processing 1 bash 14 128 84 52.38%
NOAA Weather Analysis 1 bash 13 142 84 69.05%
↪→ 2 xargs 1 109 51 113.73%
↪→ 2 sh 1 77 68 13.24%

Wikipedia Web Indexing 1 bash 16 146 84 73.81%
Video Processing 1 bash 3 137 84 63.10%
Audio Processing 1 bash 3 173 84 105.95%
Program Inference 1 bash 2 129 84 53.57%
Traffic Log Analysis 1 bash 8 120 84 42.86%
PCAP Log Analysis 1 bash 6 135 84 60.71%
↪→ 2 sh 1 83 68 22.06%

Genomics Computation 1 bash 8 127 84 51.19%
Encryption 1 bash 3 124 84 47.62%
Compression 1 bash 3 112 84 33.33%
AUR Package Compilation 1 bash 69 176 84 109.52%

… … … … … … …
↪→ 2 sh 2 138 68 102.94%
… … … … … … …
↪→ 10 make 3 123 74 66.22%
↪→ 11 collect2 1 58 46 26.09%

∗Kallas, Konstantinos, Tammam Mustafa, Jan Bielak, Dimitris Karnikis, Thurston HY Dang, Michael Greenberg, and Nikos Vasilakis. ”Practically Correct,
Just-in-Time Shell Script Parallelization.” In the 16th USENIX Symposium on Operating Systems Design and Implementation (OSDI), pp. 769–785. 2022.

agaidis@cs.brown.edu (Brown University) SysXCHG CCS 2023 11 / 14

mailto:agaidis@cs.brown.edu
https://cs.brown.edu

Over-privilege Characterization Effectiveness Evaluation

The exchange model reduces functionality useful to an attacker

Benchmark Depth Root No. Desc. Over-privilege
Critical† Functionality

… … … … … …
Bell Labs Unix50 1 bash 12 3 stdio rpath chown fattr id proc vminfo unix inet
COVID-19 Transit Analytics 1 bash 6 3 stdio chown fattr id proc vminfo unix inet
Natural-Language Processing 1 bash 14 3 stdio {c,r,w,tmp}path chown fattr id proc vminfo unix inet
NOAA Weather Analysis 1 bash 13 3 stdio chown {c,r}path fattr flock id proc protexec vminfo unix inet
↪→ 2 xargs 1 3 stdio {c,r,tmp}path fattr flock id proc protexec unix inet
↪→ 2 sh 1 7 stdio {c,tmp}path chown fattr

Wikipedia Web Indexing 1 bash 16 3 stdio {c,d,r,w,tmp}path chown fattr id proc protexec
Video Processing 1 bash 3 3 stdio {c,r}path chown fattr id proc protexec unix inet
Audio Processing 1 bash 3 3 stdio {c,r,w}path chown fattr flock id proc protexec unix inet
Program Inference 1 bash 2 3 stdio {r,w,tmp}path chown fattr id proc protexec
Traffic Log Analysis 1 bash 8 3 stdio rpath chown fattr id proc vminfo unix inet
PCAP Log Analysis 1 bash 6 3 stdio rpath chown fattr id proc protexec
↪→ 2 sh 1 3 rpath id proc stdio

Genomics Computation 1 bash 8 3 stdio rpath chown fattr id proc protexec
Encryption 1 bash 3 3 stdio{c,r}path chown fattr id proc protexec unix inet
Compression 1 bash 3 3 stdio {c,r}path chown fattr id proc
AUR Package Compilation 1 bash 69 3 stdio {c,d,r,w,tmp}path chown fattr id proc protexec vminfo unix inet

settime
… … … … … …
↪→ 2 sh 2 3 stdio {c,d,r,w,tmp}path chown fattr id proc protexec unix inet
… … … … … …
↪→ 10 make 3 3 stdio {c,d,r,w}path chown fattr id proc
↪→ 11 collect2 1 3 stdio {c,tmp}path fattr

†Ghavamnia, Seyedhamed, Tapti Palit, Shachee Mishra, and Michalis Polychronakis. “Temporal system call specialization for attack surface reduction.”
In Proceedings of the 29th USENIX Conference on Security Symposium, pp. 1749–1766. 2020.

agaidis@cs.brown.edu (Brown University) SysXCHG CCS 2023 12 / 14

mailto:agaidis@cs.brown.edu
https://cs.brown.edu

Performance Results Performance Evaluation

Both filter exchanging and xfilter are performant

i. xfilter offers a ≈76%–97% reduction in filter install time over Seccomp-BPF
S SPEC CPU 2017, Nginx, MariaDB, Redis, and SQLite

ii. xfilter filtering performance is equal to or better than Seccomp-BPF
S SPEC CPU 2017

xfilter: ≤ 0.4%
Seccomp-BPF: ≤ 0.4%

S Real-world Applications (Nginx, MariaDB, Redis, SQLite)
xfilter: ≤ 1.1%
Seccomp-BPF: ≤ 1.1%

iii. Filter exchanging overhead is negligible
S PaSH

xfilter: ≤ 1.7%
Seccomp-BPF: ≤ 2.7%

agaidis@cs.brown.edu (Brown University) SysXCHG CCS 2023 13 / 14

mailto:agaidis@cs.brown.edu
https://cs.brown.edu

Performance Results Performance Evaluation

Both filter exchanging and xfilter are performant

i. xfilter offers a ≈76%–97% reduction in filter install time over Seccomp-BPF
S SPEC CPU 2017, Nginx, MariaDB, Redis, and SQLite

ii. xfilter filtering performance is equal to or better than Seccomp-BPF
S SPEC CPU 2017

xfilter: ≤ 0.4%
Seccomp-BPF: ≤ 0.4%

S Real-world Applications (Nginx, MariaDB, Redis, SQLite)
xfilter: ≤ 1.1%
Seccomp-BPF: ≤ 1.1%

iii. Filter exchanging overhead is negligible
S PaSH

xfilter: ≤ 1.7%
Seccomp-BPF: ≤ 2.7%

agaidis@cs.brown.edu (Brown University) SysXCHG CCS 2023 13 / 14

mailto:agaidis@cs.brown.edu
https://cs.brown.edu

Performance Results Performance Evaluation

Both filter exchanging and xfilter are performant

i. xfilter offers a ≈76%–97% reduction in filter install time over Seccomp-BPF
S SPEC CPU 2017, Nginx, MariaDB, Redis, and SQLite

ii. xfilter filtering performance is equal to or better than Seccomp-BPF
S SPEC CPU 2017

xfilter: ≤ 0.4%
Seccomp-BPF: ≤ 0.4%

S Real-world Applications (Nginx, MariaDB, Redis, SQLite)
xfilter: ≤ 1.1%
Seccomp-BPF: ≤ 1.1%

iii. Filter exchanging overhead is negligible
S PaSH

xfilter: ≤ 1.7%
Seccomp-BPF: ≤ 2.7%

agaidis@cs.brown.edu (Brown University) SysXCHG CCS 2023 13 / 14

mailto:agaidis@cs.brown.edu
https://cs.brown.edu

Performance Results Performance Evaluation

Both filter exchanging and xfilter are performant

i. xfilter offers a ≈76%–97% reduction in filter install time over Seccomp-BPF
S SPEC CPU 2017, Nginx, MariaDB, Redis, and SQLite

ii. xfilter filtering performance is equal to or better than Seccomp-BPF
S SPEC CPU 2017

xfilter: ≤ 0.4%
Seccomp-BPF: ≤ 0.4%

S Real-world Applications (Nginx, MariaDB, Redis, SQLite)
xfilter: ≤ 1.1%
Seccomp-BPF: ≤ 1.1%

iii. Filter exchanging overhead is negligible
S PaSH

xfilter: ≤ 1.7%
Seccomp-BPF: ≤ 2.7%

agaidis@cs.brown.edu (Brown University) SysXCHG CCS 2023 13 / 14

mailto:agaidis@cs.brown.edu
https://cs.brown.edu

Conclusion

Conclusion Conclusion

SysXCHG: a syscall filtering enforcement mechanism that prevents over-privilege by securely
exchanging filters at runtime.

Y Exchange model adapts a process’ privileges to
current program by swapping filters on execve

Y xfilter provides an optimal number-based
enforcement mechanism with syscall table “views”

Y Exchange model reduces kernel’s attack surface and
functionality useful to an attacker

Y Filter exchanging (xfilter) incurs ≤ 1.7% overhead

https://gitlab.com/brown-ssl/sysxchg

agaidis@cs.brown.edu (Brown University) SysXCHG CCS 2023 14 / 14

https://gitlab.com/brown-ssl/sysxchg
mailto:agaidis@cs.brown.edu
https://cs.brown.edu

Backup

Evaluation Overview Evaluation

We have concluded that SysXCHG is effective and performant through a series of experiments

Y Effectiveness:
i. How much does filter exchanging reduce the attack surface of the kernel?
ii. What type of unnecessary functionality does the exchange model reduce?
iii. Is any functionality security critical?

Y Performance:
i. Does xfilter speed up filter installation over Seccomp-BPF?
ii. Does xfilter filter faster than Seccomp-BPF?
iii. Is filter exchanging performant?

Benchmark Descriptions Evaluation

Y PaSH Benchmark Suite (Effectiveness, Performance)
S Real-world applications/workloads
S Many programs are executed → filter exchanging occurs frequently

Y SPEC CPU 2017 (Performance)
S CPU-intensive workloads that perform many syscalls

Y Nginx, MariaDB, Redis, SQLite (Performance)
S Real-world applications
S Demonstrate worst-case overheads

Benchmark Testbed Backup

Y Intel Xeon W-2145 8-core (16-thread) processor
Y 64GB of DDR4 memory
Y Debian v11 (“bullseye”) Linux with kernel v6.0.8
Y CPU fixed at 3.7GHz in C0 C-state
Y DVFS (Intel Turbo Boost, Intel SpeedStep) was disabled
Y Machine operated in single-user mode with a minimal number of processes
Y Simultaneous multithreading (SMT) was enabled
Y ASLR was enabled
Y All binaries were built position-independent
Y Speculative store bypass mitigations were always disabled for Seccomp-BPF

(Full) Over-privilege Quantification Backup

Benchmark Depth Root No. Desc. Total Syscalls Over-privilege
Inheritance Exchange Percentage

Common Unix One-liners
bi-grams 1 bash 11 122 84 45.24%
diff 1 bash 6 109 84 29.76%
nfa-regex 1 bash 3 100 84 19.05%
set-diff 1 bash 7 109 84 29.76%
shortest-scripts 1 bash 8 108 84 28.57%
↪→ 2 xargs 1 52 51 1.96%
↪→ 2 xargs 1 60 51 17.65%
sort-sort 1 bash 3 102 84 21.43%
sort 1 bash 2 102 84 21.43%
spell 1 bash 7 106 84 26.19%
top-n 1 bash 5 115 84 36.90%
wf 1 bash 4 103 84 22.62%

Bell Labs Unix50 1 bash 12 124 84 47.62%
COVID-19 Transit Analytics 1 bash 6 119 84 41.67%
Natural-Language Processing 1 bash 14 128 84 52.38%
NOAA Weather Analysis 1 bash 13 142 84 69.05%
↪→ 2 xargs 1 109 51 113.73%
↪→ 2 sh 1 77 68 13.24%

Wikipedia Web Indexing 1 bash 16 146 84 73.81%
Video Processing 1 bash 3 137 84 63.10%
Audio Processing 1 bash 3 173 84 105.95%
Program Inference 1 bash 2 129 84 53.57%
Traffic Log Analysis 1 bash 8 120 84 42.86%
PCAP Log Analysis 1 bash 6 135 84 60.71%
↪→ 2 sh 1 83 68 22.06%

Genomics Computation 1 bash 8 127 84 51.19%
Encryption 1 bash 3 124 84 47.62%
Compression 1 bash 3 112 84 33.33%
AUR Package Compilation 1 bash 69 176 84 109.52%

… … … … … … …
↪→ 2 sh 2 138 68 102.94%
… … … … … … …
↪→ 10 make 3 123 74 66.22%
↪→ 11 collect2 1 58 46 26.09%

(Full) Over-privilege Characterization Backup

Benchmark Depth Root No. Desc. Over-privilege
Percentage Critical‡ Functionality

Common Unix One-liners
bi-grams 1 bash 11 45.24% 3 stdio {c,d,r}path chown fattr id proc
diff 1 bash 6 29.76% 3 stdio {c,d,r}path fattr id proc
nfa-regex 1 bash 3 19.05% 3 stdio rpath id proc
set-diff 1 bash 7 29.76% 3 stdio {c,d,r}path fattr id proc
shortest-scripts 1 bash 8 28.57% 3 stdio rpath fattr id proc
↪→ 2 xargs 1 1.96% 7 stdio
↪→ 2 xargs 1 17.65% 3 stdio {c,tmp}path fattr proc
sort-sort 1 bash 3 21.43% 3 stdio id proc
sort 1 bash 2 21.43% 3 stdio id proc
spell 1 bash 7 26.19% 3 stdio id proc
top-n 1 bash 5 36.90% 3 stdio chown fattr id proc
wf 1 bash 4 22.62% 3 stdio id proc

Bell Labs Unix50 1 bash 12 47.62% 3 stdio rpath chown fattr id proc vminfo unix inet
COVID-19 Transit Analytics 1 bash 6 41.67% 3 stdio chown fattr id proc vminfo unix inet
Natural-Language Processing 1 bash 14 52.38% 3 stdio {c,r,w,tmp}path chown fattr id proc vminfo unix inet
NOAA Weather Analysis 1 bash 13 69.05% 3 stdio chown {c,r}path fattr flock id proc protexec vminfo unix inet
↪→ 2 xargs 1 113.73% 3 stdio {c,r,tmp}path fattr flock id proc protexec unix inet
↪→ 2 sh 1 13.24% 7 stdio {c,tmp}path chown fattr

Wikipedia Web Indexing 1 bash 16 73.81% 3 stdio {c,d,r,w,tmp}path chown fattr id proc protexec
Video Processing 1 bash 3 63.10% 3 stdio {c,r}path chown fattr id proc protexec unix inet
Audio Processing 1 bash 3 105.95% 3 stdio {c,r,w}path chown fattr flock id proc protexec unix inet
Program Inference 1 bash 2 53.57% 3 stdio {r,w,tmp}path chown fattr id proc protexec
Traffic Log Analysis 1 bash 8 42.86% 3 stdio rpath chown fattr id proc vminfo unix inet
PCAP Log Analysis 1 bash 6 60.71% 3 stdio rpath chown fattr id proc protexec
↪→ 2 sh 1 22.06% 3 rpath id proc stdio

Genomics Computation 1 bash 8 51.19% 3 stdio rpath chown fattr id proc protexec
Encryption 1 bash 3 47.62% 3 stdio{c,r}path chown fattr id proc protexec unix inet
Compression 1 bash 3 33.33% 3 stdio {c,r}path chown fattr id proc
AUR Package Compilation 1 bash 69 109.52% 3 stdio {c,d,r,w,tmp}path chown fattr id proc protexec vminfo unix inet

settime
… … … … … … …
↪→ 2 sh 2 102.94% 3 stdio {c,d,r,w,tmp}path chown fattr id proc protexec unix inet
… … … … … … …
↪→ 10 make 3 66.22% 3 stdio {c,d,r,w}path chown fattr id proc
↪→ 11 collect2 1 26.09% 3 stdio {c,tmp}path fattr

Descendant Listings Backup

Benchmark Depth Root Descendants

Common Unix One-liners
bi-grams 1 bash cat, mkfifo, mktemp, paste, rm, sed, sort, tail, tee, tr, uniq
diff 1 bash cat, diff, mkfifo, rm, sort, tr
nfa-regex 1 bash cat, grep, tr
set-diff 1 bash cat, comm, cut, mkfifo, rm, sort, tr
shortest-scripts 1 bash cat, cut, file, grep, head, sort, wc, xargs
↪→ 2 xargs file
↪→ 2 xargs wc
sort-sort 1 bash cat, sort, tr
sort 1 bash cat, sort
spell 1 bash cat, col, comm, iconv, sort, tr, uniq
top-n 1 bash cat, sed, sort, tr, uniq
wf 1 bash cat, sort, tr, uniq

Bell Labs Unix50 1 bash awk, cat, cut, fmt, grep, head, sed, sort, tail, tr, uniq, wc
COVID-19 Transit Analytics 1 bash awk, cat, cut, sed, sort, uniq
Natural-Language Processing 1 bash awk, cat, grep, head, ls, mkdir, paste, rev, rm, sed, sort, tail, tr, uniq
NOAA Weather Analysis 1 bash awk, cat, curl, cut, grep, gzip, head, sed, seq, sh, sort, tr, xargs
↪→ 2 xargs curl
↪→ 2 sh gzip

Wikipedia Web Indexing 1 bash cat, cut, grep, iconv, mkfifo, mktemp, node, pandoc, paste, rm, sed, sort, tail, tee, tr, uniq
Video Processing 1 bash basename, convert, mkdir
Audio Processing 1 bash basename, ffmpeg, mkdir
Program Inference 1 bash mkdir, node
Traffic Log Analysis 1 bash awk, basename, cat, cut, head, mkdir, sort, uniq
PCAP Log Analysis 1 bash grep, mkdir, sh, sort, tcpdump, uniq
↪→ 2 sh grep

Genomics Computation 1 bash cat, cut, mkdir, samtools, sed, sort, tr, uniq
Encryption 1 bash basename, mkdir, openssl
Compression 1 bash basename, mkdir, zip
AUR Package Compilation 1 bash arch, ar, as, awk, basename, bash, bsdtar, cat, cc1, cc, chmod, chown, cmp, collect2, cpp, cp, cut, date, echo, expr, faked-sysv,

file, find, gcc, getopt, gettext, git-upload-pack, git, gmake, gpg, grep, gzip, head, hostname, install, jar, ld, ln, logname, ls,
make, md5sum, mkdir, mktemp, msgfmt, msgmerge, mv, nawk, nm, patch, pkg-config, python3, readelf, rm, sed, sha1sum, sha256sum,
sh, sort, split, strip, test, touch, tr, uname, uniq, wc, xgettext, zstd

… … … …
↪→ 2 sh bash, bsdtar
… … … …
↪→ 10 make install, make, sh
↪→ 11 collect2 ld

Syscall Functionality Descriptors Backup

Y Syscall functionality descriptors based on OpenBSD pledge promises

Functionality Description

stdio standard input/output functionality
cpath create new files or directories
dpath create special files
rpath read-only effects on file system
wpath write-only effects on file system
tmppath create/read/write in /tmp
chown change file ownership
fattr modify file attributes
flock file locking functionality
id change rights of a process
proc operations for processes
protexec create executable memory regions
vminfo operations for virtual memory inspection
unix socket programming for AF_UNIX
inet socket programming for AF_INET[6]
settime set system time

Critical Syscalls Backup

Y Critical syscalls from Ghavamnia et al.

clone execveat execve fork ptrace
chmod fchmodat mprotect setgid setreuid
setuid accept4 accept bind connect
listen recv recvfrom read socket
send sendto write dup dup2
dup3 eventfd eventfd2 open openat
select pselect6 epoll_wait epoll_wait_old poll
ppoll epoll_pwait

Install Timing Backup

 0

 50

 100

 150

 200

mariadb

nginx
redis

sqlite
600.perlbench_s

602.gcc_s

605.mcf_s

619.lbm_s

620.omnetpp_s

623.xalancbmk_s

625.x264_s

631.deepsjeng_s

638.imagick_s

641.leela_s

644.nab_s

657.xz_s

F
i
l
t
e
r

I
n
s
t
a
l
l

T
i
m
e

(
u
s
)

xfilter
Linear

Linear+Cache
Skiplist

Skiplist+Cache

(Full) SPEC CPU 2017 Performance Results Backup

Y Performance results for SPEC CPU 2017 using the inheritance model

Benchmark Seccomp-BPF xfilter
Man. Exec. Man. Exec.

600.perlbench_s ≈0% ≈0% ≈0% ≈0%
602.gcc_s ≈0% 0.44% ≈0% 0.33%
605.mcf_s ≈0% 0.37% ≈0% 0.29%
620.omnetpp_s ≈0% 0.34% ≈0% ≈0%
623.xalancbmk_s ≈0% ≈0% 0.11% 0.36%
625.x264_s ≈0% 0.12% ≈0% 0.09%
631.deepsjeng_s 0.02% 0.02% 0.38% 0.02%
641.leela_s ≈0% 0.02% ≈0% 0.05%
657.xz_s ≈0% ≈0% ≈0% ≈0%
619.lbm_s 0.14% ≈0% 0.05% ≈0%
638.imagick_s 0.09% 0.04% 0.04% ≈0%
644.nab_s 0.02% 0.07% ≈0% ≈0%

(Full) Real-world Performance Results Backup

Y Performance results for real-world applications using the inheritance model (exec filters only).

Benchmark Seccomp-BPF xfilter

Nginx (1KB) 1.08% 0.07%
Nginx (100KB) 0.54% 1.10%
Nginx (1MB) 1.07% 1.11%
Redis (GET) 0.53% 0.26%
Redis (SET) 0.53% 0.26%
MariaDB 0.80% 0.50%
SQLite ≈0% ≈0%

(Full) PaSH Performance Results Backup

Y Performance results for PaSH using the exchange model

Benchmark Seccomp-BPF xfilter

Common Unix One-liners
bi-grams 6.02% 3.30%
diff 6.57% 0.84%
nfa-regex 7.21% 0.90%
set-diff 7.81% 0.69%
shortest-scripts 1.42% 0.34%
sort-sort 7.11% 0.36%
sort 6.38% 1.08%
spell 1.77% 0.37%
top-n 2.41% ≈0%
wf 2.54% 0.82%

Bell Labs Unix50 0.40% 0.39%
COVID-19 Transit Analytics 0.87% 0.78%
Natural-Language Processing 0.95% 0.51%
NOAA Weather Analysis 0.96% 0.88%
Wikipedia Web Indexing 0.34% 0.16%
Video Processing 0.43% 0.40%
Audio Processing 0.03% 0.05%
Program Inference 0.29% 0.12%
Traffic Log Analysis 1.11% 0.30%
PCAP Log Analysis 0.25% 0.31%
Genomics Computation ≈0% 0.18%
Encryption 0.29% 0.10%
Compression ≈0% ≈0%
AUR Package Compilation 2.74% 1.71%

Threat Model Backup

Adversarial Capabilities
Y No constraints on the types of vulnerabilities (ab)used by the attacker
Y No constraints on the applied exploitation technique
Y Ultimately, we assume an attacker that can:

i. Invoke any syscall
ii. Pass arbitrary arguments
iii. Repeatedly perform i. and ii. at arbitrary times

Y On par with state-of-the-{art, practice} regarding syscall filtering

Hardening Assumptions
Y Linux kernel with support for Seccomp-BPF and IMA (neither can be disabled)
Y Target applications contain benign code
Y Standard userland hardening schemes are orthogonal to our scheme
Y Given this, an attacker can attempt to:

i. Elevate their privileges by finding and exercising vulnerabilities in syscalls
ii. Maliciously request unintended OS services (post-exploitation)

Example Seccomp-BPF Filter Program Backup

Y struct of syscall information passed to Seccomp-BPF programs:

1 struct seccomp_data {
2 int nr; /* syscall number */
3 u32 arch; /* syscall convention */
4 u64 instruction_pointer; /* next insn */
5 u64 args[6]; /* syscall arguments */
6 };

Y Simple Seccomp-BPF program that enforces the syscall set of read (0), write (1), exit (15),
and sigreturn (60) via linear search.

1 #define NRMAX (X32_SYSCALL_BIT - 1)
2 #define ALLOW SECCOMP_RET_ALLOW
3 #define DENY SECCOMP_RET_KILL_PROCESS
4
5 struct sock_filter filter[] = {
6 /* ... check arch ... */
7 BPF_JUMP(BPF_JMP | BPF_JGT | BPF_K, NRMAX , 5, 0),
8 BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, 0, 3, 0),
9 BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, 1, 2, 0),

10 BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, 15 , 1, 0),
11 BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, 60 , 0, 1),
12 BPF_STMT(BPF_RET | BPF_K, ALLOW),
13 BPF_STMT(BPF_RET | BPF_K, DENY)
14 };

Syscall Filtering Classifications Backup

Syscall filtering schemes can be classified based on where filtering decision-making and
enforcement takes place.

i. Both occur in user mode
S Usually done with process tracing utilities (e.g., ptrace(2))
S Easy to test/deploy (no superuser privilege or kernel recompilation required)
S Adds no additional code to the kernel
S Suffers from poor performance (adds 2–4 context switches per syscall)

ii. Both occur in kernel mode
S Done by modifying kernel source directly or relying on Seccomp-BPF
S Provides optimal performance
S Provides greater visibility/control over the system

iii. Both occur in a hypervisor
S OS-transparent and allows filtering in the presence of an untrusted OS
S Suffers from unnecessary complexity
S Suffers from poor visibility (it is removed from the interface it interposes)

iv. A hybrid of i.–iii.
S Can minimize code added to sensitive areas
S Suffers from poor performance due to additional context switches

Capability Systems Backup

Y Capability-based sandboxes only allow a program to access a resource if they have an
unforgeable reference to it plus the appropriate rights

Y While related to syscall filtering, we consider capability systems a separate line of work
Y Capability systems never fully block operating system functionality, as a process can confer

capabilties to another, granting increased privilege
Y Syscall filtering schemes aim to completely block OS functionality, permanently slimming the

amount of accessible code paths

xfilter Compatibility with Seccomp-BPF Backup

Y xfilter can be used in tandem with Seccomp-BPF
e.g., xfilter can filter based on numbers and Seccomp-BPF on arguments

Proc X

A
Prog Seccomp-BPF

e m
Syscall Table

...

Proc X

B
Prog Seccomp-BPF

e m
Syscall Table

...

Proc X

B
Prog Seccomp-BPF

e m
Syscall Table

...

Proc X

C
Prog Seccomp-BPF

e m
Syscall Table

...

Proc X

D
Prog Seccomp-BPF

e m
Syscall Table

...e e e

Proc X

D
Prog Seccomp-BPF

e m
Syscall Table

...e m e m m

Proc X

E
Prog Seccomp-BPF

e m
Syscall Table

...e m e m m

execve(B)

execve(C)

execve(D)

execve(E)

seccomp(m)

prctl(m)

S
eccom

p
-B

P
F

In
stallation

s
xfilter

In
stallation

s
1

2

3

4

5

6

Examples of Software Bloat Backup

Y Windows 95 (≈50MB)§ → Windows 11 (≈64GB)¶

Y /bin/true‖: 1979 (0B) → 2012 (22KB)

∗∗
§http://support.microsoft.com/kb/138349/
¶https://www.theverge.com/microsoft/22544171/microsoft-windows-11-system-requirements-hardware
‖https://spinroot.com/gerard/pdf/Code_Inflation.pdf

∗∗Quach, Anh, Rukayat Erinfolami, David Demicco, and Aravind Prakash. “A multi-OS cross-layer study of bloating in user programs, kernel and managed
execution environments.” In Proceedings of the 2017 Workshop on Forming an Ecosystem Around Software Transformation, pp. 65-70. 2017.

	Motivation
	SysXCHG Design
	Implementation & Evaluation
	Conclusion
	Appendix
	Backup

