US 20190370152A1

a2y Patent Application Publication (o) Pub. No.: US 2019/0370152 Al

a9y United States

GODEFROID et al. 43) Pub. Date: Dec. 5, 2019
(54) AUTOMATIC INTELLIGENT CLOUD (52) US. CL
SERVICE TESTING TOOL CPC GOG6F 11/3664 (2013.01); GO6F 11/3684
(2013.01)
(71) Applicant: Microsoft Technology Licensing, LLC,
Redmond, WA (US)
57 ABSTRACT

(72) Inventors: Patrice GODEFROID, Mercer Island,
WA (US); Marina POLISHCHUK,
Seattle, WA (US); Evangelos
ATLIDAKIS, North Bergen, NJ (US)

(73) Assignee: Microsoft Technology Licensing, LLC,
Redmond, WA (US)

(21) Appl. No.: 15/992,727

In a method for automatically testing a service via a pro-
gramming interface of the service includes, a set of opera-
tion descriptions describing a set of operations supported by
the service is obtained. The set of operation descriptions
includes respective descriptions of requests associated with
respective operations in the set of operations and responses
expected in response to the requests. Based on the set of
operation descriptions, dependencies among the requests

(22) Filed: May 30, 2018 associated with the respective operations are determined,
Publication Classification an aset of test request sequences that satisfy the de.termlned
ependencies is generated. Test request sequences in the set
(51) Int. CL of test request sequences are executed to test the service via
GOG6F 11/36 (2006.01) the programming interface of the service
p- 100
Testing Tool 102)
e — Service
i 104
110 112 %
% 4 Regusst
Service Ope{aﬁcn SGQLEGHCGS
Specification | Specification Descriptions | Testing Engine
he Analyzer o 108
108 -
Rasponses
----------------------------------- ®
116

L Oid

US 2019/0370152 A1

=]
S
=]
o
~d
2 gt
=
7 4|
H sasucdsay R R
K ® 301
" 8ot - iezhpuy -
< » aubug Bunss | suonduosa uolROYINRAS uopesosdy
2 ' ssousnbeg uoessdQ B0INIBS
1ssnbey % %
e ® Zit 011
P01 ;
OIS i o X
g0t ooy Bugss)

001

Patent Application Publication

Patent Application Publication Dec. 5,2019 Sheet 2 of 8 US 2019/0370152 A1

210
;

g 200

FIG. 2

Dec. 5,2019 Sheet 3 of 8 US 2019/0370152 A1

Patent Application Publication

g€ "Old

Ve "Oid

US 2019/0370152 A1

Dec. 5,2019 Sheet 4 of 8

00

Patent Application Publication

80F

cuibusy sousnbes xew » u S8 A

90
samianbes

PBZASIU0D DIEAUW DIBEOSID pur U yiBuel o saouenbas
DHEA 10 166 8L} U} S90LaNbOS SINIOXE PUE SZISIBLOD

ssinuepusdep
Asaes eyl ¢ yibust 4o ss0ousnbios pHea JO 193 B Sleiausy)

&

v "Old

G "OId

US 2019/0370152 A1

«© N

= - 904 _

wi£ b e ; sucheiado Bupeosid syl Ag -
0ig _ . 805

- ponpoid uonrisdo pepusdde oy 103 % A

m sousnbes syl pJBISIO ON P m@wsmm s spalgo uwcmc £p 12 By sai asuanbes sy Usey

7 - :

(=

e

<

(g\]

pf 7]

3 aousnbes

a

sS4 ut vonesedn pepuedde syl pesnoud eyl suoneisdo
Ag paonposd 510800 SrUBUAD JO 188 B euiuusied

!

05
asouanbes syl ui uoneiado (158)) pepusdde

a4y 40} pesinbas 5108lq0 JHUBUAD |0 168 B suLIBie(

006

Patent Application Publication

Patent Application Publication Dec. 5,2019 Sheet 6 of 8 US 2019/0370152 A1

800

o=

FIG. 6

Patent Application Publication Dec. 5,2019 Sheet 7 of 8 US 2019/0370152 A1

700

Obtain a set of operation descriptions describing a set of
operations supported by the service, whersin the set of
oparation descnptions includes respective descriptions of i}
requests associated with respective operations in the set of
operations and i) responses expecied in response io the
raquests

02

l

Determine, based on the set of operation descriptions,
dependencies among ths requests associated with the
respective operations

04

¥

Geanerale 3 set of tast request saquences that satisfy the
determined dependencies

106

¥

Execute test request sequences in the set of tes! request
sequences (o fest the service via the programmable interface
of the service

708

FIG. 7

Dec. 5,2019 Sheet 8 of 8 US 2019/0370152 A1

Patent Application Publication

g8
& urt UOHEDIINWILIND

/

¥

g8

QOBLSIU] HIOMISN | 155 10850501

7T8 oAl 38 g ebeioig 508 Aowspy

0]

&

008

8 'Oid

T18 1nding

US 2019/0370152 Al

AUTOMATIC INTELLIGENT CLOUD
SERVICE TESTING TOOL

FIELD OF THE DISCLOSURE

[0001] The present disclosure relates generally to testing
tools and, more particularly, to a tool for testing of a service
or application.

BACKGROUND

[0002] Services, such as Web Service applications or other
application, have become popular for hosting software
applications, for providing platforms for data storage and
analysis, for providing infrastructure applications, and the
like. Such services are often hosted in the cloud and may be
accessible and/or programmable via service interfaces, such
as application programming interfaces (APIs), which may,
for example, conform to a representational state transfer
(REST) protocol (e.g., RESTful APIs). An interface of a
service may be described by a computer-readable specifi-
cation associated with the service. Such specification may
generally describe requests supported by the service and
responses that may expected from the service. Recently,
standardized formats for describing application interfaces
have been developed. For example, Swagger (or
“OpenAPI”) is a standardized format commonly utilized for
describing a RESTful APL

[0003] Testing of such services, for uncovering bugs,
finding security vulnerabilities and the like, may be an
important for providing functional and reliable services.
Automatic testing tools currently used for testing such
services typically capture live API traffic, e.g., traffic
between a third party application and a service, and may
then parse, fuzz and replay the traffic in an effort to find bugs
and/or security vulnerabilities in the service. Such tools,
however, are not systematic and may not be effective.

SUMMARY

[0004] In an embodiment, a method for automatically
testing a service via a programming interface of the service
includes obtaining, at one or more hardware processors, a set
of operation descriptions describing a set of operations
supported by the service, wherein the set of operation
descriptions includes respective descriptions of 1) requests
associated with respective operations in the set of operations
and 1i) responses expected in response to the requests. The
method also includes determining, with the one or more
hardware processors based on the set of operation descrip-
tions, dependencies among the requests associated with the
respective operations. The method further includes generat-
ing, with the one or more hardware processors, a set of test
request sequences that satisfy the determined dependencies.
The method further includes executing, with the one or more
hardware processors, test request sequences in the set of test
request sequences to test the service via the programming
interface of the service.

[0005] Inanother embodiment, a testing system comprises
a specification analyzer configured to parse a computer-
readable specification describing a programming interface
of a service to generate a set of operation descriptions
describing a set of operations supported by the service,
wherein the set of operation descriptions includes respective
descriptions of 1) requests associated with respective opera-
tions in the set of operations and ii) responses expected in

Dec. 5, 2019

response to the requests. The testing system also comprises
a testing engine configured to: determine, based on the set of
operation descriptions, dependencies among respective
requests associated with the respective operations; generate,
based on the set of operation descriptions and the deter-
mined dependencies, a set of test request sequences that
satisfy the determined dependencies; and execute test
request sequences in the set of test request sequences to test
the service via the programming interface of the service.
[0006] In yet another embodiment, a tangible computer
readable medium, or media, storing machine readable
instructions that, when executed by one or more processors,
cause the one or more processors to: obtain a set of operation
descriptions describing a set of operations supported by the
service, wherein the set of operation descriptions includes
respective descriptions of 1) requests associated with respec-
tive operations in the set of operations and ii) responses
expected in response to the requests; determine, based on the
set of operation descriptions, dependencies among respec-
tive requests associated with the respective operations; gen-
erate, based on the set of operation descriptions and the
determined dependencies, a set of test request sequences that
satisfy the determined dependencies; and cause test request
sequences in the set of test request sequences to be executed
to test the service via the programming interface of the
service.

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] FIG. 1 is a block diagram of an example testing
system that may be configured to test a service, according to
an embodiment;

[0008] FIG. 2 is a diagram illustrating an example service
specification that may be utilized with the testing system of
FIG. 1, according to an embodiment;

[0009] FIG. 3Ais a diagram illustrating an example opera-
tion description that may be included in a set of operation
descriptions generated by the testing system of FIG. 1 based
on the service specification of FIG. 2, according to an
embodiment;

[0010] FIG. 3B illustrates a trace of a request generated
based on the operation description of FIG. 3A and a response
received in response to executing the request, according to
an embodiment;

[0011] FIG. 4 is a flow diagram of a process for testing a
service, according to an embodiment;

[0012] FIG. 5 is a block diagram of a process for checking
dependencies in a test request sequence generated in the
process of FIG. 4, according to an embodiment;

[0013] FIG. 6 is an example implementation of the process
of FIG. 4, according to an embodiment;

[0014] FIG. 7 is a flow diagram of a method that may be
implemented by the testing system of FIG. 1 to test a service
via a programming interface of the service, according to an
embodiment; and

[0015] FIG. 8 is a block diagram of a computer system
suitable for implementing one or more components of the
testing system of FIG. 1, according to an embodiment.

DETAILED DESCRIPTION

[0016] In various embodiments described below, an auto-
matic testing tool for testing a service, such as a cloud
service, generates intelligent tests for systematically testing
the service based on analysis of a computer-readable speci-

US 2019/0370152 Al

fication that describes a programming interface of the ser-
vice. Based on analyzing the specification, the testing tool
may determine what specific requests are supported by the
service, and what responses may be expected from the
service, and may generate dependency information for
determining dependencies among the specific requests sup-
ported by the specification. Based on the dependency infor-
mation, the testing tool may infer that certain request com-
binations are not valid or are unsupported. As an example,
the testing tool may infer that infer that a request B should
not be executed before a request A because the request B
takes, as an input, a variable (e.g., a resource id) returned in
response to execution of the request A. Based on analyzing
the specification, the testing tool may generate, execute and
process responses of test request sequences for testing the
service. The testing tool may utilize the interred dependen-
cies to automatically avoid executing invalid request
sequences when testing the service, thereby reducing com-
plexity of testing and time required to perform the testing of
the service, in a least some embodiments. These and other
techniques described herein may allow the testing tool to
thoroughly and effectively exercise a service without execut-
ing all possible test request sequences that may be system-
atically generated for testing the service, in at least some
embodiments.

[0017] FIG. 1 is a block diagram of an example testing
system 100, according to an embodiment. The testing sys-
tem 100 includes a testing tool 102 communicatively
coupled to a service 104. The service 104 may generally be
a service or an application that may be accessible over a
network, such as a cloud service or application accessible
over the Internet. The service 104 may, for example, be a
software application provided as software-as-a-service (e.g.,
an email application, a blog hosting application, an office
tool application, etc.), a platform provided as platform-as-
a-service (e.g., a data mining application, a data analytics
application, a software development tool, etc.), an infra-
structure provided as infrastructure-as-a service (e.g., com-
puting infrastructure), etc. The service 104 may provide a
programming interface, such as an application programming
interface (API), that may include a set of routines, objects,
operations, functions, etc. accessible by users, third party
applications, other services, etc., and may allow the users or
other services or applications to interact with, utilize and
customize the service or application 104. In an embodiment,
the service 104 may conform to a representational state
transfer (REST) architecture and may provide a program-
ming interface that conforms to the REST architecture. For
example, the service 104 may be a RESTful web service,
which may provide a RESTful API. The RESTful API of the
service 104 may allow other services or applications to
interact with the service 104 over the Internet using the
hypertext transfer protocol (HTTP), for example, and may
allow the other services or applications to access and
manipulate the service 104 using requests transmitted over
the Internet using HTTP. The RESTful API of the service
104 may generally expose various functions, modules, etc.
of the service 104 using standard operations, such as a GET
operation to retrieve a resource (e.g., stored data), a PUT
operation to update or otherwise change the state of a
resource, a POST operation to create a resource, a DELETE
operation to delete a resource, and the like.

[0018] The testing tool 102 may be configured to generate,
execute and process responses of test request sequences to

Dec. 5, 2019

test the service 104, aimed at uncovering security vulner-
abilities, software bugs, etc., in the service 104. The testing
tool 102 may include a specification analyzer 106 and a
testing engine 108. The specification analyzer 106 may
receive, as an input, a specification 110 that may describe the
programming interface (e.g., REST API) of the service 104.
The specification 110 may be a Swagger or an OpenAPI
specification that may utilize the Swagger or OpenAPI
interface-description language for describing the format of
requests supported by the service 104 and the format of
response that may be provided by the service 104. In other
embodiments, the specification 110 may be a suitable speci-
fication that utilizes an interface-description language dif-
ferent from the Swagger or OpenAP]I interface-description
language. Based on analyzing the specification 110, the
specification analyzer 106 may generate a set operation
descriptions 112 identifying and providing descriptions of
operations supported by the service 104. The set of operation
descriptions 112 may include request generating grammars
for generating requests to be provided to the service 104 for
executing the respective operations supported by the service
104, and formats of corresponding responses that may be
expected from the services 104. The set of operation descrip-
tions 112 may also include information for determining
dependencies among the requests supported by the service
104. For example, for each request supported by the service
104, the specification analyzer 106 may indicate any param-
eters (e.g., dynamic objects such as resource identifiers) that
are required as inputs for generating the request, and any
parameters (e.g., dynamic objects such as resource identifi-
ers) that are returned by a response to the request. Based on
such dependency information in the set of operation descrip-
tions 112, the testing tool 102 may infer dependencies
among the requests supported by the service 104. For
example, the testing tool 102 may infer that a request B
should not be executed before a request A because the
request B takes, as an input, a variable (e.g., a resource id)
returned in response to execution of the request A. The
testing tool 102 may utilize the interred dependencies to
automatically avoid executing invalid test request
sequences, that do not satisfy the dependencies, when testing
the service 104, thereby reducing complexity of testing and
time required to perform the testing of the service 104, in a
least some embodiments.

[0019] With continued reference to FIG. 1, the set of
operation descriptions 112 may be provided to the testing
engine 108. The testing engine 108 may use the set of
operation descriptions 112 to generate and execute test
request sequences 114 to test the service 104, and may
dynamically analyze responses 116 received from the ser-
vice 104. To perform intelligent testing, without executing
test sequences that encompass all possible request combi-
nations, the testing engine 108 may execute only those test
sequences that are determined to be valid, by automatically
eliminating test request sequences that are determined to be
invalid. For example, the testing engine 108 may determine
that a test request sequence is invalid if the test request
sequence does not satisfy one or more dependencies that
may be inferred from the set of operation descriptions 112.
The testing engine 108 may determine that the test sequence
does not meet one or more dependencies, for example, by
determining, based on dependency information in the set of
operation descriptions 112, that one or more parameters
required as inputs to a request in the test request sequence is

US 2019/0370152 Al

not produced by any preceding request in the test request
sequence. In response to determining that a test request
sequence does not satisfy one or more dependencies, the
testing engine 108 may discard this test request sequence
without executing the test request sequence. As another
example, the testing engine may determine that a test request
sequence is invalid by analyzing a response received in
response to executing the test request sequence, for example
if the response does not indicate successful completion of
the test request sequence. In response to determining that a
test request sequence is not valid based on a response
received in response to executing of the test request
sequence, the testing engine 108 may discard the test
sequence so that the test request sequence is not used in
generating subsequent test sequences for further testing the
service 104. These and other techniques described herein
may allow the testing tool 102 to thoroughly and effectively
exercise the service 104, and to uncover errors in the service
104, without executing all possible test request sequences
that may be systematically generated for testing the service
104, in at least some embodiments

[0020] FIG. 2 is a diagram illustrating an example service
specification 200, according to an embodiment. The service
specification 200 may correspond to the service specification
110 illustrated in FIG. 1, and, for ease of explanation, the
service specification 200 is described below with reference
to the testing system 100 of FIG. 1. In other embodiments,
however, the service specification 200 may be utilized with
suitable testing systems different from the testing system
100 of FIG. 1. Similarly, the testing system 100 of FIG. 1
may utilize suitable service specifications different from the
service specification 200, in some embodiments.

[0021] The service specification 200 describes a program-
ming interface of a blog hosting service and may be pro-
vided in the contest of the service 104 being a blog hosting
service. In other embodiments, the service specification 200
may describe interfaces of other suitable services. The
programming interface of the blog hosting service may be a
RESTful API, or may be another suitable type of program-
ming interface. The service specification 200 may define a
set of operations 202 that may be supported the blog hosting
service. In the illustrated example, the set of operations 202
includes five operations, including i) a GET operation 202-1
that returns a list of blogs currently hosted by the blog
hosting service for a user, ii) a POST operation 202-2 that
creates a new blog post, iii) a DELETE operation 202-3 that
deletes a blog post, iv) a GET operation 202-4 that returns
a particular blog post, and v) a PUT operation 202-5 that
updates a particular blog post, in the illustrated embodiment.
In other embodiments, service specification 200 may define
other suitable sets of operations, including sets of operations
having fewer than five operations or greater than five
operations.

[0022] For each of the operations 202, the service speci-
fication 200 specifies a format of a request expected by the
blog hosting service for the corresponding operation, and a
format of a corresponding response that may be expected
from the blog post service in response to executing the
operation. FIG. 2 illustrates an example operation specifi-
cation 210 for the POST operation 202-2, according to an
embodiment. The other ones of the operations 202 may have
similar operation specifications. The operation specification
210 may be provided in YALM format, as in the illustrated
embodiment, or may be provided in another suitable

Dec. 5, 2019

machine readable format. The operation specification 210
may include a definitions portion 212 and a path portion 214.
The definitions portion 212 may include definitions of one or
more parameters (e.g., objects) that may be required or
optional for generating the request for the corresponding
operation. For example, the definitions portion 212 indicates
that an object named body of type string is required for a
request for the POST operation, and that object named id of
type integer is optional (not indicated as being required) for
the request for the POST operation, in the illustrated
embodiment. The path portion 214 may specify a grammar
for generating the request, e.g., the syntax for generating the
request. The path portion 214 may specify HTTP syntax for
the request, as illustrated in FIG. 2, or may specify the
syntax of another suitable format.

[0023] The testing tool 102 (e.g., the specification ana-
lyzer 106) of the testing system 100 of FIG. 1 may analyze
the service specification 200, and may automatically gener-
ate the set of operation descriptions 112 based on the service
specification 200. FIG. 3A is a diagram illustrating an
example operation description 300 that may be included in
the set of operation descriptions 112 generated based on the
specification 200, according to an embodiment. The speci-
fication analyzer 106 may generate the operation description
300 based on the POST operation specification 210 of the
service specification 200. The specification analyzer 106
may similarly analyze the operation specifications of other
operation 202 of the specification 200, and may generate the
set of operation descriptions 112 to include respective opera-
tion descriptions such as the operation description 300 for
each operation 202 of the specification 200.

[0024] The operation description 300 may be encoded in
an executable code, such as executable python code, and
may be executable to automatically generate a request for
the operation and process a response received in response to
execution of the request by the service 104. The operation
description 300 includes a request generation portion 302
and a response processing portion 304. The request genera-
tion portion 302 may include a set of static and fuzzable
parameters 310 that may be used generate a request. The
static and fuzzable parameters 310 may be listed in a proper
order for generating the request. A static parameter 310 may
indicate a string to be appended to the previous parameter
310, without being modified prior to being appended to the
previous parameter 310. A fuzzable parameter 310, on the
other hand, may indicate a type of an object to be appended
to the previous parameter 310. Subsequently, the indication
of the type of a fuzzable parameter may be replaced with a
value of the corresponding type. The value of the corre-
sponding type may be selected from a dictionary of values
of'the type, as will be explained in more detail below, or may
be determined in another suitable manner. The request
generation portion 302 may be executed to generate a POST
request that may then be transmitted to the service 104. FI1G.
3B, briefly, illustrates a trace of a POST request 350 that may
be generated based on the operation description 300, accord-
ing to an example embodiment. FIG. 3B additionally illus-
trated a response 352 that may be received in response to
executing the POST request 350, in an example embodi-
ment.

[0025] Referring again to FIG. 3A, the response process-
ing portion 304 of the operation description 300 may include
code for parsing the response expected to be received in
response to execution of the request specified in the request

US 2019/0370152 Al

generation portion 302. Parsing of the response may include
extracting values one or more parameters returned in the
response. For example, parsing the response for the POST
request may include extracting a value of an id returned in
response to the post request (e.g., “id”:5889, in the embodi-
ment illustrated in FIG. 3B). The values of the one or more
parameters returned in the response may be memorized (e.g.,
stored in a memory) so that the values may subsequently be
used for generating requests for which the parameters are
required or optional inputs, for example.

[0026] FIG. 4 is a flow diagram of an example process 400
for testing a service, according to an embodiment. In an
embodiment, the process 400 is implemented by the testing
tool 102 (e.g., the testing engine 108 of the fuzzing tool 102)
of FIG. 1. The process 400 may utilize the set of operation
descriptions 112 to generate, execute and process responses
of test request sequences for testing the service 104. In an
embodiment, the process 400 may perform one or more
iterations of generating, executing and analyzing responses
of test request sequences of increasing lengths, until a
maximum length n is reached. Each iteration may begin at
block 402, at which the variable n, which may initially be set
to 0, is incremented by 1. At block 404, a set of valid test
request sequences of length n (i.e., including n requests) may
be generated, where n is an integer greater than 0. The
testing engine 108 may generate the set of valid test request
sequences by extending each test request sequence of length
(n-1) generated and retained in the previous iteration, by
appending a new request, selected from the set of operation
descriptions 112, to the test request sequence of length
(n-1), and determining whether the newly generated test
request sequence of length n is valid by checking whether
the dependencies for the appended request are satisfied. If
the dependencies for the for the appended request are
satisfied, then the testing engine 108 may retain the newly
generated test request sequence in the set of test request
sequences of length n. On the other hand, if the dependen-
cies for the appended request are not satisfied, then the
testing engine 108 may omit the newly generated test
request sequence from the set of test sequences of length n.

[0027] FIG. 5 is a block diagram of a process 500 for
checking dependencies in a newly generated test request
sequence of length n, when a particular new request is
appended to a test request sequence in a previously gener-
ated set of test request sequences on length n—-1, according
to an embodiment. In an embodiment, the testing engine 108
implements the process 500 at block 404 to check whether
dependencies for an appended request are satisfied. At block
502, a set of dynamic objects required as inputs to the
appended request is determined. For example, the testing
engine 108 may determine the set of dynamic objects
required as inputs for the appended request by obtaining
indications of required input objects from an operation
description, corresponding to the appended request, in the
set of operation descriptions 112. At block 504, a set of
dynamic objects produced by the preceding requests (if any)
in the test request sequence is determined. For example, the
testing engine 108 may determine the set of dynamic objects
produced by the preceding requests in the test request
sequence by obtaining indications of returned objects from
respective operation descriptions, corresponding to the pre-
ceding requests, in the set of operation descriptions 112. At
block 506, it is determined whether all dynamic objects in
the set of dynamic objects required as inputs for the

Dec. 5, 2019

appended request (determined at block 502) are included in
the set of dynamic objects produced by the preceding
requests (determined at block 504). If it is determined at
block 506 that each required dynamic object in the set of
dynamic objects determined at block 502 is included in the
set of produced dynamic objects determined at block 504,
this signifies that dependencies for the appended request are
satisfied. In this case, the process 500 may proceed to block
508, at which the newly generated test request sequence is
retained in (e.g., added to) the set of test request sequences
of length n. On the other hand, if it is determined at block
506 that at least one dynamic object in the set of dynamic
objects determined at block 502 is not included in the set of
produced dynamic objects determined at block 504, this
signifies that dependencies for the appended request are not
satisfied. In this case, the process 500 may proceed to block
510, at which the newly generated test request sequence is
discarded.

[0028] Referring back to block 404 of FIG. 4, at block
406, respective test request sequences in the set of valid test
sequences of length n generated at block 404 are concretized
and executed. To concretize a test request sequence, the
testing engine 108 may replace any fuzzable parameters in
the last, newly appended, request in the test request
sequence with concrete values of corresponding object
types. The concrete values for replacing the fuzzable param-
eters may be obtained from dictionaries of predetermined
values of the corresponding object types. The dictionaries
may be user-defined, for example. The testing engine 108
may generate multiple concretized test request sequences
based on a particular valid test request sequence to include
all possible combinations of all of fuzzable object values
provided in the dictionaries of the corresponding object
types. To limit the number of such test sequences, the
dictionaries provided for the respective object types may be
relatively small, in some embodiments. For example, each
provided dictionary may include only one or several entries.
As just an example, a dictionary for an integer type may
include only one or several integers (e.g., a dictionary
consisting of 0, 1 and —10), a dictionary for a string type may
include only one or several stings (e.g., a dictionary con-
sisting of one very long sample string and one empty string),
a dictionary for a Boolean type may include True and False,
and so on. In some embodiments, for example when rela-
tively larger dictionaries are provided, a sampling technique
may be used such that not all dictionary entries are utilized.
For example, the testing engine 108 may randomly select,
for concretizing a fuzzable object in a request, a subset of
one or more entries from the dictionary, and use the selected
subset of one or more entries to concretize the fuzzable
object in the request. Alternatively, the testing engine 108
may implement a suitable combinatorial technique to per-
form all-pairs (also referred to herein as “pairwise™) testing
or, more generally, N-wise testing so that, all possible
discrete combinations of dictionary entries for each pair or
N-tuple of fuzzable objects in the sequence are utilized.
Such techniques may generally reduce the number of con-
cretized test request sequences that are subsequently
executed to test the corresponding service.

[0029] With continued reference to FIG. 4, block 406 may
additionally include executing each concretized test request
sequence, and processing responses received from the ser-
vice 104 in response to execution of the concretized test
request sequence. To execute a concretized test request

US 2019/0370152 Al

sequence, the testing engine 108 may sequentially execute
the requests in the concretized test request sequence, analyze
responses received in response to executing the requests,
extract an memorize any dynamic objects returned in the
responses, and include the memorized dynamic objects as
needed in subsequent requests in the concretized test request
sequence. Based on processing the responses, the testing
engine 108 may determine whether or not the concretized
test request sequence is valid. For example, the testing
engine 108 may determine that the concretized sequence is
valid if the responses indicate successful completion of the
concretized test request sequence (e.g., if a last response
contains an HTTP code in the 200 range), and may deter-
mine that the concretized sequence is not valid if the
response does not indicate a successful completion (e.g., if
the last response contains an HTTP code not in the 200
range). [f the concretized test request sequence is determined
to be invalid, then the testing engine 108 may log an error
(e.g., log the executed concretized test sequence and the
corresponding HTTP code) in an error log that may be stored
in a memory coupled to the testing engine 108. The testing
engine 108 may discard the invalid concretized test request
sequence so that this concretized test request sequence is not
used is generating subsequent extended test request
sequences, in an embodiment.

[0030] Logging errors at block 404 may include clustering
(e.g., bucketizing) certain type of errors (e.g., bugs). For
example, the testing engine 108 may cluster bugs found
based on test request sequences for which an HTTP code in
the 500 range (“internal server errors”) was received in the
corresponding responses. Such errors may be caused by a
same combination of requests that may be repeatedly
included in test request sequences of greater lengths.
Accordingly, the received response may actually not
uncover a new error, but rather may correspond to an error
that was already discovered in logged in a previous iteration
of the process 400. In an embodiment, to facilitate analyses
of the error log by a user, the testing engine 108 may cluster
such repeated errors in the error log. For example, each time
a response with such a code (e.g., an HTTP code in the 500
range) is received, the testing engine 108 may compute all
non-empty suffixes of the corresponding test sequence and
may search through the error log to determine whether one
or more of the non-empty suffixes have already been
recorded in the error log. If the testing engine 108 finds an
existing entry containing a particular suffix already recorded
in the error log, the testing engine 108 may add the new error
to a cluster or bucket of the existing entry in the log error.
On the other hand, if the testing engine 108 does not find an
existing entry containing a particular suffix in the error log,
the testing engine 108 may create a new entry and may store
the test sequence and its associated error code in the new
entry.

[0031] Referring still to FIG. 4, at block 408, the testing
engine 108 may determine whether or not the maximum test
sequence length (max) has been reached. The maximum
length max may be preconfigured, or may be user-configu-
rable, in various embodiments. If it is determined at block
408 that the maximum length max has not yet been reached
(e.g., if n<max is true), then the process 400 may return to
block 402, and another iteration of the process 400 may be
initiated. On the other hand, if it is determined at block 408
that the maximum length max has been reached (e.g., if

Dec. 5, 2019

n<max is false), then the process 400 may be completed and
accordingly, the process 400 may terminate.

[0032] Referring back to block 404, in an embodiment, in
each iteration of the process 400, the testing engine 108
generates all possible combinations of test sequences of
length n, in an attempt to find errors by searching through all
possible combinations of valid test sequences of length n. In
other words, the testing engine 108 implements a breadth
first search (BFS) by exploring all possible test sequences in
each iteration of the process 400, in this embodiment. In
other embodiments, the testing engine 108 implements other
suitable search strategies. For example, the testing engine
108 may implement a BFS-fast search, in an embodiment. In
this embodiment, in each iteration of the process 400, the
testing engine 108 may generate at block 404 a set of valid
sequences in which each sequence of length n-1 is appended
with only one request selected from the set of requests
provided in the set of operation descriptions 212. Accord-
ingly, in this embodiment, while in each iteration of the
process 400 the testing engine 108 may use each request in
the set of sequences of length n-1 to generate a new
sequence of length n, not all possible such sequences are
generated, reducing the number of valid test request
sequences that are generated and executed in each iteration,
in this embodiment. As a result, the testing engine 108 may
go deeper into testing sequences of greater lengths quicker,
in this embodiment. As yet another example, the testing
engine 108 may implement a Random Walk search, in yet
another embodiment. In this embodiment, in each iteration
of'the process 400, the testing engine 108 may generate only
a single (or only a few) valid test request sequences of length
n, for example by randomly selecting one or more test
request sequences in the set of test sequences of length n-1,
and extending the one or more selected test sequences by
appending one or more requests randomly selected from the
requests provided in the set of operation descriptions 202.
Once the maximum length n is reached, the testing engine
108 may restart the process 400 to begin another Random
Walk search, with potentially other random selections, in an
embodiment.

[0033] Referring briefly to FIG. 6, an example implemen-
tation 600 may generally corresponds to the process 400 of
FIG. 4, according to an embodiment. The example imple-
mentation 600 may be implemented in the testing tool 102
of the testing system 100 of FIG. 1, in an embodiment. For
example, the example implementation 600 may be partially
implemented by the specification analyzer 106 of the testing
tool 102 of the testing system 100 of FIG. 1 and partially
implemented by the testing engine 108 of the testing tool
102 of the testing system 100 of FIG. 1. In other embodi-
ments, the example implementation 600 may be imple-
mented by other suitable components of the testing system
100 of FIG. 1, or may be implemented by suitable testing
systems different from the testing system 100 of FIG. 1.

[0034] FIG. 7 is a flow diagram of a method 700 for
automatically testing a service via a programming interface
of the service, according to an embodiment. In an embodi-
ment, the method 700 is implemented in conjunction with
the testing system 100 of FIG. 1. For example, the method
700 is implemented by the testing tool 102 (e.g., the testing
module 108) of the testing system 100 of FIG. 1, in an
embodiment. In other embodiments, the method 700 is
implemented by suitable components different from the
testing tool 102 and/or is implemented in conjunction with

US 2019/0370152 Al

testing systems different from the testing system 100. At
block 702, a set of operation descriptions is obtained. The set
of operation descriptions may describe a set of operations
supported by the service. The set of operation descriptions
may include, for example, respective descriptions of i)
requests associated with respective operations in the set of
operations and ii) responses expected in response to the
requests. The set of operation descriptions may be obtained
from a specification analyzer (e.g., the specification analyzer
106). The specification analyzer may generate the set of
operation descriptions by parsing a service specification
(e.g., the service specification 110) defining the program-
ming interface of the service. In other embodiments, the set
of operation descriptions may be obtained in other suitable
manners. For example, the set of operation descriptions may
be provided as a direct input to the testing tool 102, e.g., by
a user of the testing tool 102.

[0035] At block 704, dependencies among the requests
associated with the respective operations are determined.
Determining the dependencies may include, for example,
determining that a first request associated with a first opera-
tion in the set of operations should not be executed before a
second request associated with a second operation in the set
of operations because the second request associated with the
second operation takes, as an input, a parameter (e.g., a
resource id) returned in response to the first request associ-
ated with the first operation. In an embodiment, the depen-
dencies are determined based on the set of operation descrip-
tions obtained at block 702. For example, the dependencies
are determined based on 1) parameters indicated in the set of
operation descriptions as being required as inputs to the
respective requests and ii) parameters indicated in the set of
operation descriptions as being expected to be returned in
response to the respective requests. In other embodiments,
the dependencies are determined based on the set of opera-
tion descriptions in other suitable manners.

[0036] At block 706, a set of test request sequences is
generated. In an embodiment, the set of test request
sequences may be generated based on the set of operation
descriptions obtained at block 702 and the dependencies
determined at block 704. The set of test request sequences
may be generated to include only those test request
sequences that satisfy the dependencies determined at block
704. The set of test request sequences may omit test request
sequences for which the dependencies determined at block
704 are not satisfied. Respective requests in the set of test
request sequences may be generated based on respective
request generation grammars that may be provided in the set
of operation descriptions obtained at block 702, in an
embodiment. In other embodiments, the respective requests
in the set of test request sequences may be generated in other
suitable manners.

[0037] At block 708, test request sequences in the set of
test request sequences may be executed to test the service via
the programming interface of the service. Block 708 may
include, prior to executing a test request sequence, replacing
one or more fuzzable parameters in one or more requests in
the test request sequence with values of corresponding
parameter types to generate one or more concretized test
request sequence based on the test request sequence. In this
case, executing the test request sequence may comprise
executing each of the one or more concretized test request
sequences. The one or more fuzzable parameters may be
replaced with values selected from respective dictionaries

Dec. 5, 2019

corresponding to the parameter types. Executing the test
request sequences may include processing responses
obtained from executing the test request sequences. The
responses may be processed based on respective response
formats that may be provided for the corresponding opera-
tions in the set operation descriptions obtained at block 702.
Based on processing the responses, one or more errors may
be detected, and the detected errors may be logged in an
error log. Logging the one or more errors may include
clustering test request sequences causing a same error in a
same entry in the error log.

[0038] FIG. 8 is a block diagram of a computing system
800 suitable for implementing one or more embodiments of
the present disclosure. In its most basic configuration, the
computing system 800 may include at least one processor
802 and at least one memory 804. The computing device 800
may also include a bus (not shown) or other communication
mechanism for communicating information data, signals,
and information between various components of computer
system 800. Components may include an input component
810 that processes a user action, such as selecting keys from
a keypad/keyboard, selecting one or more buttons or links,
etc., and sends a corresponding signal to the at least one
processor 802. Components may also include an output
component, such as a display, 811 that may display, for
example, results of operations performed by the at least one
processor 802. A transceiver or network interface 806 may
transmit and receive signals between computer system 800
and other devices, such as user devices that may utilize
results of processes implemented by the computer system
800. In one embodiment, the transmission is wireless,
although other transmission mediums and methods may also
be suitable.

[0039] The at least one processor 802, which can be a
micro-controller, digital signal processor (DSP), or other
processing component, processes these various signals, such
as for display on computer system 800 or transmission to
other devices via a communication link 818. The at least one
processor 802 may also control transmission of information,
such as cookies or IP addresses, to other devices. The at least
one processor 802 may execute computer readable instruc-
tions stored in the memory 804. The computer readable
instructions, when executed by the at least one processor
802, may cause the at least one processor 802 to implement
processes associated with determination of a user context,
generation of customized translated content based on the
user context, output of the customized translated content,
etc. as described above.

[0040] Components of computer system 800 may also
include at least one static storage component 816 (e.g.,
ROM) and/or at least one disk drive 817. Computer system
800 may perform specific operations by processor 802 and
other components by executing one or more sequences of
instructions contained in system memory component 804.
Logic may be encoded in a computer readable medium,
which may refer to any medium that participates in provid-
ing instructions to the at least one processor 802 for execu-
tion. Such a medium may take many forms, including but
not limited to, non-transitory media, non-volatile media,
volatile media, and transmission media. In various imple-
mentations, non-volatile media includes optical or magnetic
disks, volatile media includes dynamic memory, such as
static storage component 816, and transmission media
includes coaxial cables, copper wire, and fiber optics. In one

US 2019/0370152 Al

embodiment, the logic is encoded in non-transitory com-
puter readable medium. In one example, transmission media
may take the form of acoustic or light waves, such as those
generated during radio wave, optical, and infrared data
communications.

[0041] Some common forms of computer readable media
includes, for example, floppy disk, flexible disk, hard disk,
magnetic tape, any other magnetic medium, CD-ROM, any
other optical medium, punch cards, paper tape, any other
physical medium with patterns of holes, RAM, PROM,
EEPROM, FLASH-EEPROM, any other memory chip or
cartridge, or any other medium from which a computer is
adapted to read.

[0042] In various embodiments of the present disclosure,
execution of instruction sequences to practice the present
disclosure may be performed by computer system 800. In
various other embodiments of the present disclosure, a
plurality of computer systems 800 coupled by communica-
tion link 818 to the network (e.g., such as a LAN, WLAN,
PTSN, and/or various other wired or wireless networks,
including telecommunications, mobile, and cellular phone
networks) may perform instruction sequences to practice the
present disclosure in coordination with one another.

[0043] Where applicable, various embodiments provided
by the present disclosure may be implemented using hard-
ware, software, or combinations of hardware and software.
Also, where applicable, the various hardware components
and/or software components set forth herein may be com-
bined into composite components comprising software,
hardware, and/or both without departing from the spirit of
the present disclosure. Where applicable, the various hard-
ware components and/or software components set forth
herein may be separated into sub-components comprising
software, hardware, or both without departing from the
scope of the present disclosure. In addition, where appli-
cable, it is contemplated that software components may be
implemented as hardware components and vice-versa.

[0044] Software, in accordance with the present disclo-
sure, such as program code and/or data, may be stored on
one or more computer readable mediums. It is also contem-
plated that software identified herein may be implemented
using one or more general purpose or specific purpose
computers and/or computer systems, networked and/or oth-
erwise. Where applicable, the ordering of various steps
described herein may be changed, combined into composite
steps, and/or separated into sub-steps to provide features
described herein.

[0045] While various operations of a service testing sys-
tem have been described herein in terms of “modules” or
“components,” it is noted that terms are not limited to single
units or functions. Moreover, functionality attributed to
some of the modules or components described herein may
be combined and attributed to fewer modules or compo-
nents. Further still, while the present invention has been
described with reference to specific examples, those
examples are intended to be illustrative only, and are not
intended to limit the invention. It will be apparent to those
of ordinary skill in the art that changes, additions or dele-
tions may be made to the disclosed embodiments without
departing from the spirit and scope of the invention. For
example, one or more portions of methods described above
may be performed in a different order (or concurrently) and
still achieve desirable results.

Dec. 5, 2019

What is claimed is:

1. A method for automatically testing a service via a
programming interface of the service, the method compris-
ing

obtaining, at one or more hardware processors, a set of

operation descriptions describing a set of operations
supported by the service, wherein the set of operation
descriptions includes respective descriptions of i)
requests associated with respective operations in the set
of operations and ii) responses expected in response to
the requests;

determining, with the one or more hardware processors

based on the set of operation descriptions, dependen-
cies among the requests associated with the respective
operations;

generating, with the one or more hardware processors, a

set of test request sequences that satisfy the determined
dependencies; and

executing, with the one or more hardware processors, test

request sequences in the set of test request sequences to
test the service via the programming interface of the
service.

2. The method of claim 1, wherein obtaining the set of
operation descriptions comprises obtaining the set of opera-
tion descriptions by parsing a computer-readable service
specification defining the programming interface of the
service.

3. The method of claim 1, wherein determining the
dependencies among the respective requests comprises
determining the dependencies based on i) parameters indi-
cated in the set of operation descriptions as being required
as inputs to the respective requests and ii) parameters
indicated in the set of operation descriptions as being
expected to be returned in response to the respective
requests.

4. The method of claim 1, further comprising, prior to
executing a test request sequence in the set of test request
sequences, replacing, with the one or more hardware pro-
cessors, one or more fuzzable parameters in one or more
requests in the test request sequence with values of corre-
sponding parameter types to generate one or more concret-
ized test request sequences based on the test request
sequence, and wherein executing test request sequences in
the set of test request sequences includes executing each of
the one or more concretized test request sequences.

5. The method of claim 3, wherein replacing the one or
more fuzzable parameters includes selecting respective ones
of the values for replacing the one or more fuzzable param-
eters from respective ones of one or more dictionaries of
values of corresponding parameter types.

6. The method of claim 4, wherein replacing the one or
more fuzzable parameters comprises replacing multiple fuz-
zable parameters in a request with respective combinations
of values selected from the respective dictionaries of values
of corresponding parameter types to generate respective
ones of multiple concretized test request sequences, and
wherein executing test request sequences in the set of test
request sequences includes executing the multiple concret-
ized test request sequences.

7. The method of claim 1, wherein generating the set of
test request sequences comprises performing multiple itera-
tions of generating, based on the set of operation descrip-
tions, test sequences of increasing lengths, including, in a
particular iteration of multiple iterations, generating test
request sequences of length n by appending requests to test

US 2019/0370152 Al

request sequences of length n-1 generated in a previous
iteration of the multiple iterations, wherein n is an integer
greater than zero.
8. The method of claim 7, wherein performing an iteration
of the multiple iterations includes appending at least one
request in the set of requests to at least one test request
sequence in a set of test request sequences generated in a
previous iteration of the multiple iterations.
9. The method of claim 7, wherein executing the set of test
request sequences includes
executing a request sequence generated in a first iteration
of multiple iterations,
processing a response received from the service in
response to executing the test request sequence to
determine whether the response indicates successful
completion of execution of the test request sequence,
and
in response to determining that the response does not
indicate successful completion of execution of the test
request sequence, 1) logging an error associated with
the test request sequence and ii) discarding the request
sequence from the set of test request sequences so that
the request sequence is not used in a subsequent
iteration of the multiple iteration sequences.
10. The method of claim 1, further comprising
detecting, with the one or more hardware processors,
multiple errors based on processing responses received
in response to executing the test request sequences in
the set of test request sequences; and
logging, with the one or more hardware processors in
entries of an error log, request sequences that caused
the multiple errors, including clustering, in a single
entry in the error log, multiple ones of the request
sequences that caused a same error.
11. A testing system, comprising:
a specification analyzer configured to parse a computer-
readable specification describing a programming inter-
face of a service to generate a set of operation descrip-
tions describing a set of operations supported by the
service, wherein the set of operation descriptions
includes respective descriptions of i) requests associ-
ated with respective operations in the set of operations
and ii) responses expected in response to the requests;
and
a testing engine configured to
determine, based on the set of operation descriptions,
dependencies among respective requests associated
with the respective operations;

generate a set of test request sequences that satisfy the
determined dependencies; and

execute test request sequences in the set of test request
sequences to test the service via the programming
interface of the service.

12. The testing system of claim 11, wherein determining
the dependencies among the respective requests comprises
determining the dependencies based on i) parameters indi-
cated in the set of operation descriptions as being required
as inputs to the respective requests and ii) parameters
indicated in the set of operation descriptions as being
expected to be returned in response to the respective
requests.

13. The testing system of claim 11, wherein the testing
engine is further configured to, prior to executing a test
request sequence in the set of test request sequences, replace

Dec. 5, 2019

one or more fuzzable parameters in one or more requests in
the test request sequence with values of corresponding
parameter types to generate one or more concretized test
request sequences based on the test request sequence, and
wherein executing test request sequences in the set of test
request sequences includes executing each of the one or
more concretized test request sequences.

14. The testing system of claim 13, wherein the testing
engine is further configured to select respective ones of the
values for replacing the one or more fuzzable parameters
from respective ones of one or more dictionaries of values
of corresponding parameter types.

15. The testing system of claim 11, wherein the testing
engine is configured to perform multiple iterations of gen-
erating, based on the set of operation descriptions, test
sequences of increasing lengths, including, in a particular
iteration of multiple iterations, generating test request
sequences of length n by appending requests to test request
sequences of length n—1 generated in a previous iteration of
the multiple iterations, wherein n is an integer greater than
Zero.

16. The testing system of claim 15, wherein performing an
iteration of the multiple iterations includes appending at
least one request in the set of requests to at least one test
request sequence in a set of test request sequences generated
in a previous iteration of the multiple iterations.

17. The testing system of claim 15, wherein the testing
engine is configured to execute the set of test sequences
request at least by

executing a request sequence generated in a first iteration

of multiple iterations,

processing a response received from the service in

response to executing the test request sequence to
determine whether the response indicates successful
completion of execution of the test request sequence,
and

in response to determining that the response does not

indicate successful completion of execution of the test
request sequence, 1) logging an error associated with
the test request sequence and ii) discarding the test
request sequence from the set of request sequences so
that the test request sequence is not used in a subse-
quent iteration of the multiple iterations.

18. A tangible computer readable medium, or media,
storing machine readable instructions that, when executed
by one or more processors, cause the one or more processors
to:

obtain a set of operation descriptions describing a set of

operations supported by the service, wherein the set of
operation descriptions includes respective descriptions
of 1) requests associated with respective operations in
the set of operations and ii) responses expected in
response to the requests;

determine, based on the set of operation descriptions,

dependencies among respective requests associated
with the respective operations;

generate a set of test request sequences that satisfy the

determined dependencies; and

cause test request sequences in the set of test request

sequences to be executed to test the service via the
programming interface of the service.

19. The tangible computer-readable medium or media of
claim 18, storing machine readable instructions that, when
executed by the one or more processors, cause the one or

US 2019/0370152 Al

more processors to obtain the set of operation descriptions
by parsing a computer-readable service specification defin-
ing the programming interface of the service.

20. The tangible computer-readable medium or media of
claim 18, storing machine readable instructions that, when
executed by the one or more processors, cause the one or
more processors to determine the dependencies among the
respective requests based on i) parameters indicated in the
set of operation descriptions as being required as inputs to
the respective requests and ii) parameters indicated in the set
of operation descriptions as being expected to be returned in
response to the respective requests.

#* #* #* #* #*

Dec. 5, 2019

