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The POSIX standard for APIs was developed over 25 years ago. We 
explored how applications in Android, OS X, and Ubuntu Linux use 
these interfaces today and found that weaknesses or deficiencies in 

POSIX have led to divergence in how modern applications use the POSIX 
APIs. In this article, we present our analysis of over a million applications 
and show how developers have created workarounds to shortcut POSIX and 
implement functionality missing from POSIX.

The Portable Operating System Interface (POSIX) is the IEEE standard operating system 
(OS) service interface for UNIX-based systems. It describes a set of fundamental abstrac-
tions needed for efficient construction of applications. Since its creation over 25 years ago, 
POSIX has evolved to some extent (e.g., the most recent update was published in 2013 [9]), 
but the changes have been small overall. Meanwhile, applications and the computing plat-
forms they run on have changed dramatically: modern applications for today’s smartphones, 
desktop PCs, and tablets interact with multiple layers of software frameworks and libraries 
implemented atop the OS. 

Although POSIX continues to serve as the single standardized interface between these soft-
ware frameworks and the OS, little has been done to measure whether POSIX abstractions 
are effective in supporting modern application workloads, or whether new, non-standard 
abstractions are taking form, dethroning traditional ones.

We present the first study of POSIX usage in modern OSes, focusing on three of today’s most 
widely used mobile and desktop OSes—Android, OS X, and Ubuntu—and popular consumer 
applications characteristic to these OSes. We built a utility called libtrack, which supports 
both dynamic and static analyses of POSIX use from applications. We used libtrack to shed 
light on a number of important questions regarding the use of POSIX abstractions in modern 
OSes, including which abstractions work well, which appear to be used in ways for which 
they were never intended, which are being replaced by new and non-standard abstractions, 
and whether the standard is missing any fundamental abstractions needed by modern work-
loads. Our findings can be summarized as follows:

First, usage is driven by high-level frameworks, which impacts POSIX’s portability goals. 
The original goal of the POSIX standard was application source code portability. However, 
modern applications are no longer being written to standardized POSIX interfaces. Instead, 
they rely on platform-specific frameworks and libraries that leverage high-level abstractions 
for inter-process communication (IPC), thread pool management, relational databases, and 
graphics support.

Modern OSes gravitate towards a more layered programming model with “taller’’ interfaces: 
applications directly link to high-level frameworks, which invoke other frameworks and 
libraries that may eventually utilize POSIX. This new, layered programming model imposes 
challenges to application portability and has given rise to many different cross-platform 
SDKs that attempt to fill the gap left by a standard that has not evolved with the rest of the 
ecosystem.



www.usenix.org  FA L L 20 16  VO L .  41 ,  N O.  3 7

Dimitris Mitropoulos is a 
Postdoctoral Researcher in the 
Computer Science Department 
at Columbia University in the 
City of New York. He holds a 

PhD (‘14) in Cybersecurity with distinction 
from the Athens University of Economics 
and Business. His research interests include 
application security, systems security, and 
software engineering.  
dimitris.i.mitropoulos@gmail.com

Jason Nieh is a Professor 
of Computer Science and 
Co-Director of the Software 
Systems Laboratory at 
Columbia University. Professor 

Nieh has made research contributions in 
software systems across a broad range 
of areas, including operating systems, 
virtualization, thin-client computing, cloud 
computing, mobile computing, multimedia, 
Web technologies, and performance 
evaluation. nieh@cs.columbia.edu

Second, extension APIs, namely ioctl, dominate modern POSIX usage patterns as OS develop-
ers increasingly use them to build support for abstractions missing from the POSIX standard. 
Extension APIs have become the standard way for developers to circumvent POSIX limita-
tions and facilitate hardware-supported functionality for graphics, sound, and IPC.

Third, new abstractions are arising, driven by the same POSIX limitations across the three 
OSes, but the new abstractions are not converging. To deal with abstractions missing from the 
aging POSIX standard, modern OSes are implementing new abstractions to support higher-
level application functionality. Although these interfaces and abstractions are driven by 
similar POSIX limitations and are conceptually similar across OSes, they are not converging 
on any new standard, increasing the fragmentation of POSIX across UNIX-based OSes.

We believe our findings have broad implications related to the future of POSIX-compliant OS 
portability, which the systems research community and standards bodies will likely need to 
address in the future. To support further studies across a richer set of UNIX-based OSes and 
workloads, we make libtrack’s source code, along with the application workloads and traces, 
publicly available at: https://columbia.github.io/libtrack/. The full version of our work was 
published in EuroSys 2016 [3].

Methodology
Our study involves two types of experiments with real, client-side applications on the three 
OSes: dynamic experiments and static analysis. In support of our study, we developed libtrack, 
a tool that traces the use of a given native C library from modern applications. libtrack imple-
ments two modules: a dynamic module and a static module.

libtrack
Dynamic Module: libtrack’s dynamic module traces all invocations of native POSIX func-
tions for every thread in the system. For each POSIX function implemented in the C stan-
dard library of the OS, libtrack interposes a special “wrapper’’ function with the same name, 
and once a native POSIX function is called, libtrack logs the time of the invocation and a 
backtrace identifying the path by which the application invoked the POSIX function. It also 
measures the time spent executing the POSIX function. libtrack then analyzes these traces 
to construct a call graph and derive statistics and measurements of POSIX API usage.

Static Module: libtrack also contains a static module, which is a simple utility to help 
identify application linkage to POSIX functions of C standard libraries. Given a repository 
of Android APKs or of Ubuntu packages, libtrack’s static module first searches each APK or 
package for native libraries. Then it decompiles native libraries and scans the dynamic symbol 
tables for relocations to POSIX symbols. Dynamic links to POSIX APIs are indexed per appli-
cation (or per package) and are finally merged to produce aggregate statistics of POSIX linkage.

Workloads
Using libtrack, we performed both dynamic and static experiments. We used different work-
loads for each experiment type centered around consumer-oriented applications; these do 
not reflect POSIX’s standing in other types of workloads, such as server-side or high-perfor-
mance computing workloads.

Dynamic Experiments: We performed dynamic experiments by interacting with popular 
Android, OS X, and Ubuntu applications (apps). We selected these apps from the official mar-
ketplaces for each OS: Google Play (45 apps), Apple AppStore (10 apps), and Ubuntu Software 
Center (45 apps). We chose popular apps based on the number of installs, selecting apps 
across nine categories, and interacted manually with these applications by performing typi-
cal operations, such as refreshing an inbox or sending an email with an email application, on 
commodity devices (laptops and tablets).
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Static Experiments: We performed static experiments of 
POSIX usage at large scale by downloading over a million con-
sumer applications and checking these applications, and associ-
ated libraries, for linkage to POSIX functions of C standard 
libraries. For Android, we downloaded 1.1 million free Android 
apps from a Dec. 4, 2014 snapshot of Google Play [10]. For 
Ubuntu, we downloaded 71,199 packages available for Ubuntu 
12.04 on Dec. 4, 2014, using the Aptitude package manager.

Results
We organized the results from our study in a sequence of ques-
tions regarding the use of POSIX in modern OS. We began by 
asking which POSIX functions and abstraction families were 
being used and which were not being used by modern workloads.

Which Abstractions Are Used and Which Are Not 
Used by Modern Workloads?
To answer this question, we first used our static analysis on 
Android and Ubuntu in order to examine which of the imple-
mented abstractions were actually linked by applications or their 
libraries, giving us a more accurate view into what abstractions 
are not used by modern workloads. Afterwards, we used results 
from our dynamic experiments to examine what abstractions 
are effectively invoked by modern workloads, telling us what the 
popular POSIX abstractions are.

Linked Abstractions: Figure 1 shows the number of Android 
apps and Ubuntu packages that dynamically link to POSIX func-
tions of the respective C standard libraries. The results come 
from our large-scale static analyses of 1.1 million Android apps 
and 71,989 Ubuntu packages.

Overall, in Android, of the 821 POSIX functions implemented, 
114 of them are never dynamically linked from any native library, 
and approximately half (364 functions) are dynamically linked 
from 1% or fewer of the apps. Furthermore, our static analysis of 

Ubuntu packages shows that desktop Linux has a similar, albeit 
less definitive, trend with Android: phasing out traditional IPC 
and FS POSIX abstractions.

Dynamically Invoked Abstractions: Although linkage is a 
definite way to identify unused functions, it is only a speculative 
way to infer usage. Therefore, we next examine the actual usage 
of POSIX functions during our dynamic experiments with 45 
Android apps. POSIX functions are categorized in abstraction 
subsystems; the most popular in term of invocations, as well as 
the most expensive in terms of CPU time, are shown in Figure 2.

We observe that memory is the most heavily invoked subsystem. 
Typical representatives of this subsystem include user-space 
utilities for memory handling and system call-backed functions 
for (de)allocation of memory regions and protection properties 
setting. As shown in Figure 2, the memory subsystem is also 
the most expensive subsystem in terms of CPU consumption. 
The popularity and the cost of memory calls are driven by the 
proliferation of high-level frameworks that are heavily depen-
dent on memory-related OS functionality. The second most 
heavily invoked POSIX subsystem is threading. Its popularity is 
mainly due to Thread Local Storage (TLS) operations, which are 
very usual in Android to help map between high-level frame-
work threads and low-level native pthreads. These operations 
are relatively lightweight and therefore, contrary to memory, 
threading accounts for relatively little CPU time. Most of the 
remaining subsystems include popular or expensive functions, 
but their CPU time cost is usually proportional to the volume of 
invocations.

Crucially, there is one surprising exception: ioctl. This function 
alone accounts for more than 16% of the total CPU time, despite 
its relatively low volume of invocations (0.6%). The striking pop-
ularity of ioctl—an extension API that lets applications bypass 
well-defined POSIX abstractions and directly interact with the 
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kernel—proclaims that POSIX abstractions experience signifi-
cant limitations in supporting modern application workloads. 
Therefore, developers increasingly resort to ioctl and implement 
custom support missing from POSIX. 

To gain a view on the type of functionality implemented using 
ioctl across the three OSes, we inspect stack traces leading to 
ioctl invocations and identify which libraries triggered them. 
Table 1 shows the top libraries across the three OSes. In Android, 
graphics libraries lead to the lion’s share of ioctl invocations, fol-
lowed by Binder. In OS X, the majority of ioctl invocations come 
from network libraries. In Ubuntu, graphics libraries trigger 
approximately half of ioctl invocations, and the remaining part 
is mainly due to libraries providing network functionality. We 
next ask what are the abstractions missing from POSIX, if any, 
and why do framework libraries resort to unstructured, exten-
sion APIs to implement their functionality?

Does POSIX Lack Abstractions Needed by Modern 
Workloads?
Taking hints from Table 1, we investigate graphics functional-
ity in modern OSes, which significantly rely on ioctl signaling 
that such abstractions are missing in POSIX. In the following 
section, we additionally discuss new IPC abstractions, which are 
replacing older abstractions and are implemented atop ioctl.

Graphics: POSIX explicitly omits graphics as a point of stan-
dardization. As a result, there is no standard OS interface to 
graphics cards, and different platforms have chosen different 
ways to optimize this critical resource. The explicit omission of 
a graphics standard could be due to the emergence of OpenGL, 
a popular cross-platform graphics API used in drawing and 
rendering. While OpenGL works well for applications, OS and 
graphics library designers have no well-defined interfaces to 
accomplish increasingly complicated operations.

The lack of a standard kernel interface to GPUs has led to lim-
ited extensibility. To alleviate this fragmentation, modern GPU 
drivers and libraries are trending towards a general purpose 
computational resource, and POSIX is not in a position to stan-
dardize the use of this new, powerful paradigm. These problems 
have been studied in detail the past four years. For example, the 
PTask API [8] defines a dataflow-based programming model that 
allows the application programmer to utilize GPU resources in a 
more intuitive way, matching API semantics with OS capabilities. 
This new OS abstraction results in massive performance gains.

The lack of a standard graphics OS abstraction also causes 
development and runtime problems. With no alternative, driver 
developers are forced to build their own structure around the 
only available system call: ioctl. Using opaque input and output 
tokens, the ioctl call can be general purpose, but it was never 
intended for the complicated, high-bandwidth interface GPUs 
require. Graphics library writers must either use ioctl as a fun-
nel into which all GPU command and control is sent via opaque 
data blobs, or they must design a vendor-specific demux inter-
face akin to the syscall system call.

Interestingly, in OS X, graphics functionality does not account 
for any significant portion of ioctl invocations. The reason is 
that the driver model in OS X, IOKit, is more structured than 
in Android or Ubuntu, and it uses a well-defined Mach IPC 
interface that can effectively marshal parameters and graphics 
data across the user-kernel boundary. This creates a reusable, 
vendor-agnostic API. However, the current interface is designed 
around the same black-box hardware that runs on other plat-
forms. Therefore, a standardized OS interface to graphics pro-
cessors would likely have the same benefits on OS X as it would 
on Ubuntu or Android.

Figure 2: POSIX invocations and CPU consumption for 45 Android apps

OS First library Second library Third library Invocations

|Android Graphics (74%) (e.g., libnvrm) Binder (24%) (e.g., libbinder) Other (1%) 1.3M

|OS X Network (99%) (e.g., net.dylib) Loader (0.6%) (e.g., dyld) — 682

|Ubuntu Graphics (52%) (e.g., libgtk) Network (47%) (e.g., libQtNet) Other (1%) 0.4M

Table 1: Top libraries that invoke ioctl
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What POSIX Abstractions Are Being Replaced?
Continuing with hints from Table 1, we discuss abstractions that 
exist in POSIX but appear to be replaced by new abstractions.

Inter-Process Communication: A central IPC abstraction 
in POSIX is the message queue API (mq_*). On all platforms we 
studied, applications used some alternate form of IPC. In fact, 
Android is missing the mq_* APIs altogether. IPC on all of these 
platforms has divergently evolved beyond POSIX. 

◆◆ IPC in Android: Binder is the standard method of IPC in 
Android. It overcomes POSIX IPC limitations and serves as 
the backbone of Android inter- and intra-process communica-
tion. Using a custom kernel module, Binder IPC supports file 
descriptors passing between processes, implements object 
reference counting, and uses a scalable multithreaded model 
that allows a process to consume many simultaneous requests. 
In addition, Binder leverages its access to processes’ address 
space and provides fast, single-copy transactions. Binder 
exposes IPC abstractions to higher layers of software, and 
Android apps can focus on logical program flow and interact 
with Binder through standard Java objects and methods, 

without the need to manage low-level IPC details. Because no 
existing API supported all the necessary functionality, Binder 
was implemented using ioctl as the singular kernel interface. 
Binder IPC is used in every Android application, and accounts 
for nearly 25% of the total measured POSIX CPU time that fun-
nels through the ioctl call.

◆◆ IPC in Linux: The D-Bus protocol [5] provides apps with 
high-level IPC abstractions in GNU/Linux. It describes an IPC 
messaging bus system that implements (1) a system daemon 
monitoring system-wide events and (2) a per-user login ses-
sion daemon for communication between applications within 
the same session. The applications we inspect use mostly 
the libdbus implementation of D-Bus (38 out of 45 apps). An 
evolution of D-Bus, called the Linux Kernel D-Bus, or kdbus, 
is also gaining increasing popularity in GNU/Linux OSes. It is 
an in-kernel implementation of D-Bus that uses Linux kernel 
features to overcome inherent limitations of user-space D-Bus 
implementations. Specifically, it supports zero-copy message 
passing between processes, and it is available at boot allowing 
Linux security to directly leverage it.

◆◆ IPC in OS X: IPC in OS X diverged from POSIX since its 
inception. Apple’s XNU kernel uses an optimized descendant of 
CMU’s Mach IPC [2, 7] as the backbone for inter-process com-
munication. Mach comprises a flexible API that supports high-
level concepts such as: object-based APIs abstracting commu-
nication channels as ports, real-time communication, shared 
memory regions, RPC, synchronization, and secure resource 
management. Although flexible and extensible, the complexity 
of Mach has led Apple to develop a simpler higher-level API 
called XPC. Most apps use XPC APIs that integrate with other 
high-level APIs, such as Grand Central Dispatch.

To highlight key differences in POSIX-style IPC and newer IPC 
mechanisms, we adapt a simple Android Binder benchmark 
from the Android code base to measure both pipes and UNIX 
domain sockets as well as Binder transactions. We also use the 
MPMMTest application from Apple’s open source XNU [1]. We 
measure the latency of a round-trip message using several dif-
ferent message sizes, ranging from 32 bytes to 100 (4096 byte) 
pages. We run our benchmarks using an ASUS Nexus-7 tablet 
with Android 4.3 Jelly Bean, a MacBook Air laptop (4-core Intel 
CPU @2.0 GHz, 4 GB RAM) with OS X Yosemite, and a Dell XPS 
laptop (4-core Intel CPU @1.7 GHz, 8 GB RAM) with Ubuntu 
12.04 Precise Pangolin.

The results, averaged over 1000 iterations, are summarized in 
Table 2. Both Binder and Mach IPC leverage fast, single-copy 
and zero-copy mechanisms, respectively. Large messages in 
both Binder and Mach IPC are sent in near-constant time. In 
contrast, traditional POSIX mechanisms on all platforms suffer 
from large variation and scale linearly with message size.

Tx/Rx—Android Pipes  
avg (μs)

UNIX  
avg (μs)

Binder  
avg (μs) |

32 bytes 40 54 115

128 bytes 44 56 114

1 page 62 73 93

10 pages 291 276 93

100 pages 2402 1898 94

Tx/Rx—OS X Pipes  
avg (μs)

UNIX  
avg (μs)

Mach | 
avg (μs)

32 bytes 6 11 19

128 bytes 7 51 19

1 page 8 54 12

10 pages 18 175 15

100 pages 378 1461 12

Tx/Rx—Ubuntu Pipes  
avg (μs)

UNIX | 
avg (μs)

32 bytes 18 18

128 bytes 20 10

1 page 21 20

10 pages 58 27

100 pages 923 186

Table 2: Latency comparison of different IPC mechanisms
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Asynchronous I/O: Our experiments with Android, OS X, and 
Ubuntu apps reveal another evolutionary trend: the replacement 
of POSIX APIs for asynchronous I/O with new abstractions 
built atop POSIX multithreading abstractions. The nature and 
purpose of threads has been a debate in OS research for a long 
time [4, 6], and POSIX makes no attempt to prioritize a thread-
ing model over an event-based model. 

Our study reveals that while POSIX locking primitives are still 
extremely popular, new trends in application abstractions are 
blurring the line between event and thread by combining high-
level language semantics with pools of threads fed by event-
based loops. This new programming paradigm is enforced by 
the nature of GUI applications that require low-latency. While 
an event-based model may seem the obvious solution, event 
processing in the input or GUI context leads to suboptimal user 
experience. Therefore, dispatching event-driven work to a queue 
backed by a pool of pre-initialized threads has become a de facto 
programming model in Android, OS X, and Ubuntu. Although 
this paradigm appears in all the OSes we studied, the implemen-
tations are extremely divergent. 

Android defines several Java classes that abstract the concepts 
of creating, destroying, and managing threads (ThreadPool), 
looping on events (Looper), and asynchronous work dispatching 
(ThreadPoolExecutor). Ubuntu applications can choose from a 
variety of libraries providing similar functionality, but through 
vastly different interfaces. For example, the libglib, libQtCore, 
and libnspr all provide high-level thread abstractions based on 
the GNOME desktop environment. In OS X the APIs are, yet 
again, different. The vast majority of event-driven programming 
in OS X is done through Mach IPC. Apple has written high-level 
APIs around event handling, thread pool management, and 
asynchronous task dispatch. Most of these APIs are enabled 
through Grand Central Dispatch (GCD). GCD manages a pool 
of threads and even defines POSIX alternatives to semaphores, 
memory barriers, and asynchronous I/O. The GCD functionality 
is exported to applications from classes such as NSOperation.

In summary, driven by the strong need for asynchrony and the 
event-based nature of modern GUI applications, different OSes 
have created similar but not converging and non-standard 
adherent-threading support mechanisms. 

Conclusion
Perfect application portability across UNIX-based OSes is 
clearly beyond the realm of possibility. However, maintaining a 
subset of harmonized abstractions is still a viable alternative for 
preserving some uniformity within the UNIX-based OSes. Our 
study shows that new abstractions, beyond POSIX, are taking 
form in three modern UNIX-based OSes (Android, OS X, and 
Ubuntu), and that changes are not converging to any new unified 
set of abstractions. We believe that a new revision of the POSIX 
standard is due, and we urge the research community to inves-
tigate what that standard should be. Our study provides a few 
examples of abstractions—such as graphics, IPC, and thread-
ing—as starting points for re-standardization, and we recom-
mend that changes should be informed by popular frameworks 
that have a principal role in modern OSes. 

Availability
The extended version of our work was published in EuroSys 2016 
[3]. To support further studies across a richer set of UNIX-based 
OSes and workloads, we open source our code along with the 
application workloads and traces available: https://columbia 
.github.io/libtrack/.
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