
POSIX Abstractions in Modern Operating
Systems: The Old, the New, and the Missing

Vaggelis Atlidakis, Jeremy Andrus, Roxana Geambasu,
Dimitris Mitropoulos, and Jason Nieh

Columbia University

2

Motivating Example: Execution of iOS Apps on Android

3

Motivating Example: Execution of iOS Apps on Android

App App App

 POSIX API

 OS

OS abstractions for
portable application
development!

4

Motivating Example: Execution of iOS Apps on Android

Initial insight

● Support translation at POSIX level

● UNIX-based systems

● Similar POSIX functionality

App App App

 POSIX API

 OS

OS abstractions for
portable application
development!

5

Reality

● Cannot implement translation at POSIX level :-(

● iOS, Android platform-specific graphics libraries

Motivating Example: Execution of iOS Apps on Android

6

Reality

● Cannot implement translation at POSIX level :-(

● iOS, Android platform-specific graphics libraries

Solution

➢ Build compatibility at higher-level of abstraction

Motivating Example: Execution of iOS Apps on Android

Audience: Developers, researchers, and standard bodies

● Study the evolution of abstractions in modern OSes

● Understand how modern workloads use traditional abstractions

● Identify the needs of modern applications

7

Study Goals

● Q1: Which POSIX abstractions are unpopular for modern apps?

● Q2: Which POSIX abstractions are popular for modern apps?

● Q3: Is POSIX missing any functionality?

● More in the paper...

8

Motivation

Study Questions

Three Modern OSes
● Android 4.3, Ubuntu 12.04 , and OSX 10.10

Client-side Apps
● e.g., Facebook, Twitter, Skype, Chrome, Safari

Common User Workloads
● e.g., post update, tweet, video call, browse

9

Methodology

Workloads & Methodology

10

Methodology

Workloads & Methodology

Static Measurements
● Abstractions linked at large scale
● Analyze native libraries
● Android (>1M apps), Ubuntu (>70K pkgs), OSX (None)

11

Methodology

Workloads & Methodology

Static Measurements
● Abstractions linked at large scale
● Analyze native libraries
● Android (>1M apps), Ubuntu (>70K pkgs), OSX (None)

Dynamic Measurements
● Abstractions invoked by common workloads
● Analyze stack traces
● Android (45 apps), Ubuntu (45 apps), OSX (10 apps)

● Study Questions
○ Q1: Which POSIX abstractions are unpopular for modern apps?

○ Q2: Which POSIX abstractions are popular for modern apps?

○ Q3: Is POSIX missing any functionality?

12

Outline

Study Questions

13

Q1: Which POSIX abstractions are unpopular for modern
apps?

Study Questions

14

Q1: Which POSIX abstractions are unpopular for modern apps?

Few highly linked Interfaces
Examples
● memcpy (99% apps)
● malloc (92% apps)
● memset (90% apps)

Study Questions

15

Long tail of unused interfaces
IPC (only 32% implemented in Android)

● No shared_mem, mq

● Partially pipes, semaphores

● Very few apps link to mkfifo

Q1: Which POSIX abstractions are unpopular for modern apps?

Study Questions

16

Long tail of unused interfaces
FS (76% implemented in Android)

● Missing async I/O functions (aio_*)

● No dbm functions (dbm_*)

● Very few apps link file lock functions

Q1: Which POSIX abstractions are unpopular for modern apps?

Study Questions

17

● Very few apps link to mq_*

● Very few apps link to aio_*

Q1: Which POSIX abstractions are unpopular for modern apps?

Study Questions

18

● Large numbers of unused or unimplemented abstractions

● Departure from traditional IPC and async I/O

Q1: Which POSIX abstractions are unpopular for modern apps?

● Study Questions
○ Q1: Which POSIX abstractions are unpopular for modern apps?

○ Q2: Which POSIX abstractions are popular for modern apps?

○ Q3: Is POSIX missing any functionality?

19

Outline

20

 Memory (Examples)
● memset, memcpy

● malloc, calloc

● mprotect, cacheflush, setjmp (JIT)

 Threads (Examples)

● pthread_get_specific

● pthread_cond_signal

Study Questions

Q2: Which POSIX abstractions are popular for modern apps?

Study Questions

Q2: Which POSIX abstractions are popular for modern apps?

21

Study Questions

Q2: Which POSIX abstractions are popular for modern apps?

22

● Extension API used to shortcut POSIX

● Directly interact with the kernel

● Build functionality not expressed from POSIX APIs

23

IOCTL

24

● Analyze stack traces

● Identify libraries heavily invoking ioctl

IOCTL

25

● Analyze stack traces

● Identify libraries heavily invoking ioctl

Top Libraries that Invoke IOCTL in each OS and functionality implemented

OS 1st Library 2nd Library 3rd Library

Android Graphics (74%)
(e.g., libnvrm)

Binder IPC (24%)
(e.g., libbinder)

Other (2%)

Ubuntu Graphics (52%)
(e.g., libgtk)

Network (47%)
(e.g., libQtNet)

Other (1%)

OSX Network (99%)
(e.g., net.dylib)

Loader (1%)
(e.g., .dylib)

 -

IOCTL

26

Q2: Which POSIX abstractions are popular for modern apps?

Extension APIs!!!

● Study Questions
○ Q1: Which POSIX abstractions are unpopular for modern apps?

○ Q2: Which POSIX abstractions are popular for modern apps?

○ Q3: Is POSIX missing any functionality?

27

Outline

28

● POSIX omits graphics abstractions

● OpenGL cross-platform API used by applications

● No standard interface to GPUs but ioctl

● Limited extensibility and vendor-specific APIs

Graphics

29

● Binder IPC is a central abstraction in Android

● Android uses ioctl to build Binder in kernel

● Similar patterns in other OSes (MACH IPC, D-Bus)

IPC

30

● Binder IPC is a central abstraction in Android

● Android uses ioctl to build Binder in kernel

● Similar patterns in other OSes (MACH IPC, D-Bus)

➢ But why not traditional IPC, e.g, pipes?

IPC

Benchmarks

● Measure latency of transactions

● Binder benchmark from Android source

● MACH using MPMMTest from XNU

Consumer Devices

● Nexus-7, MacBook Air, Dell XPS

31

IPC

32

Study Questions

IPC

Limitations of traditional IPC

● Similar scalability issues

across the three OSes

● High-latency for large

transaction sizes

Benefits of new IPC

● Perform with near-constant

latency

● Leverage in-kernel single-

and zero-copy mechanisms

33

IPC

Measurement Study

34

Threads

● GUI apps require low-latency UI threads

● Dispatching events is the new paradigm

● High-level event and thread management APIs

○ Android: ThreadPool and EventLoop

○ Ubuntu: ThreadPool and EventLoop

○ OS X: Grand Central Dispatch

35

● Graphics support

● New IPC mechanisms

● Threading APIs for event-driven programming

Q3: Is POSIX missing any functionality?

36

App App App

 POSIX API

 OS

OS abstractions for
portable application
development

In the past

Evolution of systems and applications

37

App App App

 POSIX API

 OS

OS abstractions for
portable application
development

In the past

Evolution of systems and applications

“... the major good idea with UNIX

was its clean and simple interface:

open, read, and write”

~K. Thompson. Unix and Beyond,

1999

38

App App App

POSIX API

 OS

 Software Framework

Extension
APIs

Now

Evolution of systems and applications

App App App

 POSIX API

 OS

OS abstractions for
portable application
development

In the past

Multiple layers of
platform-specific
software

● Tools and methodology for static and dynamic analysis

● Identified popular, unpopular, and missing POSIX abstractions

● Open sourced tools and data:

○ https://columbia.github.io/libtrack/

39

Contributions & Future Work

https://columbia.github.io/libtrack/
https://columbia.github.io/libtrack/

● Tools and methodology for static and dynamic analysis

● Identified popular, unpopular, and missing POSIX abstractions

● Open sourced tools and data:

○ https://columbia.github.io/libtrack/

➢ Revisit OS abstractions for IPC, Threads, and Graphics

40

Contributions & Future Work

https://columbia.github.io/libtrack/
https://columbia.github.io/libtrack/

