
FineIBT: Fine-grain Control-flow Enforcement
with Indirect Branch Tracking

Alexander J. Gaidis∗
Brown University
Providence, RI, USA
agaidis@cs.brown.edu

Joao Moreira∗
Intel Corporation
Hillsboro, OR, USA

joao.moreira@intel.com

Ke Sun
Intel Corporation
Hillsboro, OR, USA
ke.sun@intel.com

Alyssa Milburn
Intel Corporation
Hillsboro, OR, USA

alyssa.milburn@intel.com

Vaggelis Atlidakis
Brown University
Providence, RI, USA

eatlidak@cs.brown.edu

Vasileios P. Kemerlis
Brown University
Providence, RI, USA
vpk@cs.brown.edu

ABSTRACT
We present the design, implementation, and evaluation of FineIBT:
a CFI enforcement mechanism that improves the precision of hard-
ware-assisted CFI solutions, like Intel IBT, by instrumenting pro-
gram code to reduce the valid/allowed targets of indirect forward-
edge transfers. We study the design of FineIBT on the x86-64 ar-
chitecture, and implement and evaluate it on Linux and the LLVM
toolchain. We designed FineIBT’s instrumentation to be compact,
incurring low runtime and memory overheads, and generic, so as to
support different CFI policies. Our prototype implementation incurs
negligible runtime slowdowns (≈0%–1.94% in SPEC CPU2017 and
≈0%–1.92% in real-world applications) outperforming Clang-CFI.
Lastly, we investigate the effectiveness/security and compatibility
of FineIBT using the ConFIRM CFI benchmarking suite, demon-
strating that our instrumentation provides complete coverage in
the presence of modern software features, while supporting a wide
range of CFI policies with the same, predictable performance.

CCS CONCEPTS
• Security and privacy→ Systems security; Software security
engineering.

KEYWORDS
Intel CET/IBT, CFI enforcement

ACM Reference Format:
Alexander J. Gaidis, Joao Moreira, Ke Sun, Alyssa Milburn, Vaggelis Atl-
idakis, and Vasileios P. Kemerlis. 2023. FineIBT: Fine-grain Control-flow
Enforcement with Indirect Branch Tracking. In 26th International Sympo-
sium on Research in Attacks, Intrusions and Defenses (RAID ’23), October
16–18, 2023, Hong Kong, Hong Kong. ACM, New York, NY, USA, 20 pages.
https://doi.org/10.1145/3607199.3607219

∗Joint first authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0765-0/23/10. . . $15.00
https://doi.org/10.1145/3607199.3607219

1 INTRODUCTION
Software systems impact virtually every aspect of modern soci-
ety, ranging from economy and politics to science and education.
Today’s software, however, is large, complex, and plagued with
vulnerabilities that allow perpetrators to exploit it for profit. Of
all the different kinds of exploitable software weaknesses, memory
errors [169]—i.e., bugs that can be (ab)used by attackers, via crafty
inputs, to corrupt or leak memory contents [159], or even cause a
DoS [179]—have shown to be particularly pernicious to deal with:
according to the SANS institute, memory errors dominate the list
of the “top 25 most dangerous software errors” [150], while vendors
like Microsoft and Google attribute ≈70% of the vulnerabilities in
their products to memory safety issues [77, 115, 163].

In real-world exploits (against software that is written inmemory-
and/or type-unsafe languages, like C/C++), attackers primarily trig-
ger spatial [122], or temporal [123], memory safety violations to
tamper with control data [93], as these facilitate hijacking the con-
trol flow of programs and allow for performing arbitrary code
execution [129]. With the adoption of the W^X memory protec-
tion policy [130] from contemporary platforms [103, 114], attackers
nowadays resort to performing computations via code reuse [32]
(e.g., ROP [153], JOP [27, 39], COP [73], JIT-ROP [156], COOP [151]).

Control-flow Integrity (CFI) [33] mitigates code-reuse-based at-
tacks (and, in general, exploits that rely on control-flow hijacking)
by confining control-flow transfers to benign, allowed (code) loca-
tions only. Since the seminal work of Abadi et al. [12], there has been
a plethora of CFI schemes proposed, ranging from software-only
ones [12, 26, 29, 34, 41, 52, 54, 60, 61, 63, 69, 72, 78, 81, 83, 85, 102,
113, 120, 124–127, 134, 135, 137, 138, 140, 152, 161, 165, 168, 172–
174, 184–186, 189], to hardware-assisted [14, 15, 19, 59, 71, 80, 82,
94, 97, 111, 118, 128, 132, 166, 171, 182, 188] and hardware-only so-
lutions [55, 56, 183, 187], which cover different points in the design
space regarding effectiveness, coverage, compatibility, etc.

CFI is increasingly gaining traction in real-world settings: Mi-
crosoft introduced its CFI scheme (i.e., CFG—Control Flow Guard)
with Visual Studio 2015 [116], and has since been using it to harden
Windows (and more) [160]; Clang/LLVM provides a range of CFI
schemes that stem directly from the work of Tice et al. [165], which
Google already uses for hardening Android [141] and Chrome [142];
while vendors like Intel and ARM have recently introduced exten-
sions for assisting CFI enforcement (Intel CET, ARM BTI) [48, 98].

RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong A. J. Gaidis, J. Moreira, K. Sun, A. Milburn, V. Atlidakis, and V. P. Kemerlis

Indirect Branch Tracking (IBT) is part of Intel’s Control-flow
Enforcement Technology (CET) [46, 154], and explicitly protects
exploitable forward-edge (i.e., via indirect call/jmp instructions)
control-flow transfers from abuse. Recently, support for IBT was
added to the Linux kernel, with v6.2 enabling kernel IBT by default
on supported (i.e., x86) platforms [107]. Linux has also received
preliminary support for IBT in userland [105, 106], as well as in the
GNUC library and Binutils [101]; in addition, both Clang/LLVM and
GCC support instrumenting code with IBT (via -fcf-protection),
which popular Linux distributions, like Ubuntu, already enable by
default [162]. Although IBT-based CFI hinders code-reuse-based
attacks, an attacker who is able to tamper with forward-edge trans-
fers can still “bend” [36] the control flow towards any of the valid/-
allowed program (code) points, because the CPU cannot differenti-
ate among different types of IBT-marked code locations. Hence, in
terms of effectiveness, IBT-based CFI is equivalent to considering
every allowed (indirect) branch target as part of the same (and only)
equivalence class. This cheme is analogous to Microsoft CFG, less
stringent than Clang-CFI, and bypassable [36, 73].

To address this overarching problem, we present FineIBT, which
aims at providing an apparatus for improving the precision of IBT-
based CFI, by instrumenting program code to reduce the valid/-
allowed targets of indirect forward-edge transfers. Advanced static
and/or dynamic analyses (hardware-assisted too [59, 71, 80, 82, 166])
that are used for pruning the set of allowed targets per indirect
control flow transfer, typically via means of enhanced points-to [59,
60, 82, 97, 127, 173], type [78, 102, 120, 165], and class hierarchy [34,
61, 81, 134, 135, 185] inference, are orthogonal to FineIBT—we do
not require nor preclude any such scheme. FineIBT focuses solely
on how to enforce a finer-grain CFI policy atop IBT (or ARM BTI).

We study the design of FineIBT on the x86-64 architecture, and
implement and evaluate it on Linux and the LLVM toolchain. We
designed FineIBT’s instrumentation to be: (1) compact, and thereby
incur low runtime and memory overhead(s); and (2) generic, so as
to support a range of different CFI policies, such as arity-based
CFI (i.e., still coarse-grain but more precise than vanilla IBT) [168],
strict/relaxed type-based CFI (e.g., à la Clang-CFI; fine-grain) [165],
or even finer-grain (and advanced) policies, like context-/path-
sensitive CFI [59, 166] andMLTA-based CFI [102], which can reduce
the number of valid/allowed targets by up to 98%, or UCT-based
(i.e., unique code target) CFI [82] that results in a single target
per indirect control flow transfer. Lastly, in antithesis to earlier
CFI schemes [12, 161], FineIBT is compatible with execute-only
memory [45], thus allowing the interplay of FineIBT with leakage-
resilient code diversification [30, 51, 139]. (Despite leveraging Intel
IBT, and the x86-64 Linux architecture, to introduce the concepts
behind FineIBT, our techniques can boost similar, hardware-based
CFI mechanisms, like ARM BTI [98]; see §7.1.)

Our results from evaluating the performance of FineIBT sug-
gest that our prototype incurs a negligible runtime slowdown:
≈0%–1.94% in SPEC CPU2017 and ≈0%–1.92% in real-world ap-
plications, like Nginx, Redis, MariaDB, and SQLite, outperforming
Clang-CFI (≈0%–7.89% in SPEC CPU2017). In terms of code-size
overhead, FineIBT’s instrumentation results in moderate (2.27%–
19.05%) code-size increase, less than that of Clang-CFI (2.13%–
23.21%) and on par with that of similar schemes [33].

In addition, we investigate FineIBT’s effectiveness (i.e., security)
and compatibility using the ConFIRMCFI benchmarking suite [180].
Our findings demonstrate that FineIBT’s nimble instrumentation
provides complete coverage in the presence of modern software fea-
tures (callbacks, exception handling, {load, run}-time code-symbol
resolution, etc.), while, at the same time, supporting a wide range
of different CFI policies (i.e., coarse- vs. fine- vs. finer-grain) with
the same, predictable (performance) behavior.

2 BACKGROUND AND RELATEDWORK
2.1 Evolution of Memory-error Exploits
Software that is written in memory- and/or type-unsafe languages,
like C, C++, Objective-C, and assembly (ASM), is vulnerable to
memory errors [169], which enable attackers to corrupt or leak con-
tents inside the (virtual) address space of victim programs. In real-
world exploits, attackers primarily aim for control data (e.g., return
addresses, function pointers, dynamic dispatch tables; code point-
ers) [93], as these facilitate hijacking the control flow of programs
and performing arbitrary code execution [129].

Historically, arbitrary code execution was achieved via means of
code injection [84]. However, with the adoption of non-executable
memory [176] from contemporary platforms [103, 114], and the
enforcement of the W^X memory protection policy [130], code
injection is nowadays used only in multi-stage exploits [170].

In the present climate, attackers resort to performing arbitrary
code execution via means of code reuse [32]: i.e., the attacker hi-
jacks the control flow (by tampering with code pointers) and ex-
ecutes benign program code in an “out-of-context” manner. A
wide range of code-reuse techniques has been proposed and de-
veloped thus far, with the following being the main representa-
tives: ROP [153], JOP [27, 39], COP [73], JIT-ROP [156], BROP [25],
SROP [28], COOP [151], CROP [70], AOCR [149], and PIROP [75].
Importantly, BlindSide [76] and SPEAR [109] have recently shown
that code reuse is also possible in the speculative execution domain.

2.2 Control-flow Integrity
The advent of code-reuse-based exploitation has, in turn, prompted
the development of a rich set of mitigations [159], with the majority
of them designed around the concepts of Control-flow Integrity
(CFI) [33], Data-flow Integrity (DFI) [18, 38], automated diversifica-
tion [23, 40, 91, 95, 145, 155, 177], andmemory isolation [90, 93, 143].

CFI was formally introduced in 2005 by Abadi et al. [12], and is
effectively a program shepherding technique [88, 136]. In particular,
under CFI, attackers are allowed to tamper with (i.e., corrupt, inject,
swap) code pointers, but control flow transfers are confined to
benign, allowed (code) locations only. Since the seminal work of
Abadi et al. there has been a plethora of CFI schemes proposed,
ranging from software-only ones [12, 26, 29, 34, 41, 52, 54, 60, 61, 63,
69, 72, 78, 81, 83, 85, 102, 113, 120, 124–127, 134, 135, 137, 138, 140,
152, 161, 165, 168, 172–174, 184–186, 189], to hardware-assisted [14,
15, 19, 59, 71, 80, 82, 86, 87, 94, 97, 111, 118, 128, 132, 166, 171, 182,
188] and hardware-only solutions [55, 56, 183, 187]. As expected,
this wide body of work covers different points in the design space
regarding effectiveness, coverage, compatibility, and target domain.

FineIBT RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong

Nevertheless, the common, underlying thread of each CFI scheme
is the existence of a control flow enforcement mechanism that effec-
tively “checks” if every computed control flow transfer is on par
with a predetermined control flow graph (CFG). Such mechanisms
act as Inlined Reference Monitors (IRMs) [64, 65] that enforce policies
regarding the target(s) of indirect branch instructions.

2.2.1 Effectiveness. The effectiveness of a CFI scheme is directly
related to its set of allowed targets per indirect control-flow transfer.
In general, the more targets allowed, the better it is for an attacker,
as there is still enough leeway to perform computations [33]. Ear-
lier CFI solutions provided coarse-grain control-flow confinement,
ranging from: (a) merely restricting indirect control flow transfers,
i.e., via call/jmp/ret in x86 to N-byte (typically N={16, 32}) aligned
instructions [113, 152, 182]; to (b) matching every ret instruction
with all possible return sites (i.e., code locations following a call
instruction) and every (indirect) call/jmp instruction with all possi-
ble function-entry points [186]; to (c) improving case (b) above with
matching every (indirect) call/jmp instruction with only address-
taken function-entry points [189]; to (d) matching every indirect
call site with entry points of address-taken functions with the
same arity [168]; and (e) everything in-between (a)–(d) [12, 26, 29,
41, 52, 63, 69, 83, 85, 118, 124–126, 132, 138, 140, 174, 184, 188]. Alas,
coarse-grain CFI is bypassable [37, 57, 73, 74].

This, in turn, has fueled the development of fine-grain CFI so-
lutions [14, 15, 19, 34, 54, 59–61, 71, 78, 80–82, 86, 87, 94, 97, 102,
111, 120, 127, 128, 134, 135, 137, 161, 165, 166, 171–173, 175, 185],
which leverage advanced static and/or dynamic analyses (often-
times hardware-assisted [59, 71, 80, 82, 166]) for further pruning the
set of allowed targets, typically via means of enhanced points-to [59,
60, 82, 97, 127, 173], type [78, 102, 120, 165], and class hierarchy [34,
61, 81, 134, 135, 185] inference. Fine-grain CFI is not bulletproof ei-
ther [36, 66, 151]. Attacks against fine(er)-grain CFI take advantage
of the inevitable imprecision (e.g., over-approximation) [146] of
the aforementioned analyses, thereby “bending” the control flow to
code locations that belong to the same equivalence class [33, 151].

2.2.2 Coverage. Indirect control-flow transfers can be further di-
vided into forward- and backward-edges, based on the type of tran-
sition(s) they correspond to in the CFG. In x86, the former rep-
resent branches via (indirect) call/jmp, while the latter via ret.
Different CFI schemes provide dissimilar coverage regarding for-
ward and backward edges, ranging from schemes that protect both
kinds of transfers [12, 14, 15, 26, 41, 52, 54–56, 59–61, 63, 71, 78,
82, 85, 94, 97, 111, 113, 118, 120, 124–128, 132, 134, 137, 138, 152,
161, 166, 168, 171–175, 182, 183, 186, 188, 189], to ones that focus
solely on forward [19, 34, 69, 83, 86, 87, 102, 135, 140, 165, 184, 185]
or backward [80, 187] edges. By and large, solutions that provide
partial coverage are shown to be easily bypassable [36]. More im-
portantly, as far as backward edges go, Abadi et al. and Carlini et al.
have demonstrated the imperative need for effective, high-precision
(i.e., fine-grain) backward-edge protection [13, 36], preferably via
means of a shadow stack [35, 53].

2.2.3 Compatibility. Certain CFI schemes operate directly on bi-
nary code, either via means of static binary analysis [12, 14, 15, 54,
61, 63, 69, 78, 134, 135, 137, 140, 168, 171, 172, 184, 186, 189] and/or
specific hardware extensions [41, 55, 56, 59, 71, 80, 94, 118, 128, 132,

183, 187, 188], while others require access to source code [19, 26, 34,
52, 60, 81–83, 85–87, 97, 102, 111, 113, 120, 124–127, 138, 152, 161,
165, 166, 173–175, 182, 185]. In general, source-code-agnostic solu-
tions tend to compromise effectiveness, and coverage, in favor of
compatibility with commercial off-the-shelf (COTS) software [33].
In antithesis, access to source code typically allows for advanced
static (points-to [82, 127, 173], multi-layer type [102, 165], and class
hierarchy [81, 185]) analyses that increase the precision (effective-
ness) and/or coverage of the respective scheme.

In a similar vein, certain CFI solutions are language-agnostic or
mostly target software written in C [12, 14, 15, 19, 26, 41, 52, 54–
56, 59, 60, 63, 71, 78, 80, 82, 85, 94, 97, 102, 111, 113, 118, 120, 124–
128, 132, 137, 152, 161, 165, 166, 168, 171, 172, 174, 175, 182, 183, 186–
189], while others are applicable only in C++ [34, 61, 69, 81, 83, 134,
135, 140, 173, 184, 185] or Objective-C [138] codebases.

2.2.4 Target Domain. Most CFI schemes are designed to protect
binary-only COTS software or userland applications written in C,
C++, Objective-C, and/or ASM [12, 19, 26, 34, 41, 55, 56, 59, 61, 69, 71,
78, 80–83, 86, 87, 102, 111, 113, 118, 124–127, 132, 134, 135, 137, 140,
152, 165, 166, 168, 172, 173, 182–189]. However, certain solutions
target more niche domains, like OS kernels and hypervisors [52, 60,
63, 85, 94, 97, 120, 161, 174], or software that executes on mobile [54,
138] and embedded (e.g., IoT) [14, 15, 128, 171, 175] devices.

2.3 Intel CET
Control-flow Enforcement Technology (CET) [46, 48, 154] is an
extension, available in modern Intel CPUs (e.g., ‘Tiger Lake’), for
assisting with control-flow confinement. CET consists of two parts:
(1) a shadow stack that concerns backward-edge control-flow trans-
fers; and (2) IBT (Indirect Branch Tracking), which targets forward-
edge control-flow transfers.

2.3.1 Shadow Stacks. For every regular stack, CET adds a shadow
stack region, which is indexed via a new register, dubbed %ssp. The
shadow stack is a contiguous (expand-down) memory area, whose
pages are “marked” accordingly (bit R/W = 0 and D = 1 in the
respective page tables), and whose integrity is hardware-enforced:
i.e., regular memory stores (executed from any ring) are not allowed
in shadow stack pages [46, 48].

When enabled, each time a call instruction gets executed, in
addition to the return address being pushed onto the regular stack,
a copy of it is also pushed onto the shadow stack. Conversely, every
time a ret instruction gets executed, the return addresses pointed
by %rsp and %ssp are popped from the two stacks, and their values
are compared together. If they differ, an exception (#CP) is raised;
else, control is transferred to the intended site.

2.3.2 Indirect Branch Tracking. CET introduces a new (4-byte) in-
struction, i.e., endbr, which becomes the only allowed target of indi-
rect call/jmp instructions. In other words, forward-edge transfers
via (indirect) call or jmp instructions are pinned to code locations
that are “marked” with an endbr; else, an exception (#CP) is raised.
Moreover, one can exclude certain indirect branches from being
confined, by instrumenting them with the notrack prefix. Lastly,
endbr instructions are treated as a nop in older CPUs, which lack
CET support, or in cases where IBT is turned off [46, 48].

RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong A. J. Gaidis, J. Moreira, K. Sun, A. Milburn, V. Atlidakis, and V. P. Kemerlis

2.3.3 Speculative Execution. In addition to the above, CET imposes
restrictions on the execution of instructions speculatively. Specifi-
cally, in the case of ret, the speculative execution of instructions at
return sites takes place only if the two return addresses pointed to
by %rsp and %ssp match (or predicted by RSB [92, 108]). Similarly,
in the case of indirect call/jmp, speculative execution takes place
only if the target of the respective branch is an endbr [46, 48].

2.3.4 System Support. Currently, the Linux kernel (since v6.2) en-
ables IBT by default [107], and patches exist that provide prelimi-
nary userland support for Intel CET in Linux [105, 106], the GNU C
library (glibc), and Binutils [101]. In addition, both Clang/LLVM
and GCC support instrumenting code with IBT (via -fcf-prot-
ection), which effectively results in adding endbr instructions in
every address-taken function, but, importantly, in every (code) sym-
bol with non-local linkage (i.e., every exported function) as well.
The latter is important for supporting function calls across dynamic
shared objects (DSOs).

Specifically, ELF-based platforms rely on the PLT/GOT (and
the dynamic linker/loader; ld.so) to support function calls across
DSOs [131]. In x86 Linux, every PLT entry includes an indirect jmp
instruction for branching to the target (code) symbol—potentially
located in a different DSO (i.e., .so ELF file)—via an accompanying
GOT “slot.” As GOT entries are writeable addresses (because they
have to be updated by ld.so lazily; i.e., delayed binding), every
(code) symbol they may end-up “pointing at” has to be endbr-
instrumented to prevent attacks that tamper with GOT entries
(i.e., GOT overwrite attacks). In other words, every code symbol
in a DSO, with non-local linkage, can potentially be the target
of a forward-edge transfer via PLT/GOT, and hence needs to be
IBT-hardened. (We further discuss this issue in Section 4.4.)

2.3.5 ABI Changes. The introduction of IBT mandated an update
to the x86-64 PLT format [131] (exemplified in Appendix A.2) to
handle address-taken PLT entries—i.e., allow indirect call instruc-
tions to target PLT slots—, which typically occur when a symbol
with external linkage has its address taken.

Under the standard PLT format, if an IBT-hardened program
were to indirectly target a PLT entry, a #CP exception would be
raised due to the entry having no endbr “landing pad.” Thus, to
accommodate IBT, a new PLT format was introduced that allows
PLT entries to be indirectly targeted. The IBT PLT splits each entry
across two tables contained in two ELF sections: .plt.sec and
.plt. The former consists of an endbr instruction followed by a
memory-indirect jmp through the GOT, and the latter consists of an
endbr instruction followed by code to arrange for symbol resolution
via the dynamic linker/loader (ld.so).

Importantly, the endbrs in the .plt.sec section are required
for indirectly-called external functions, and the endbrs in the .plt
section are required to support delayed binding, as the first time an
external function is called, its .plt.sec entry will indirectly jump
through the GOT to the corresponding .plt entry. An unfortunate
repercussion of the IBT PLT is the increase of allowed branch targets
to include every .plt.sec slot (they can be address-taken) and
every .plt slot (they are targets of .plt.sec entries). A thorough
description of the IBT PLT is given in Appendix A.3.

2.4 Toolchain Support for CFI
2.4.1 Visual Studio. Microsoft introduced Control Flow Guard
(CFG) with Visual Studio 2015 [116]. CFG (enabled with /guard:cf)
assigns a bitmap to each process, in which two bits represent
16 bytes of (virtual) memory. In addition, memory locations that
correspond to entry points of address-taken functions have their
bits asserted in the bitmap. CFG instruments every forward-edge,
indirect control-flow transfer with an IRM (at the call site) that
consults the bitmap regarding the target address: if the respective,
requisite bits are asserted, then the branch is allowed, as the control
will be transferred to a valid entry point; else, an exception is raised.

In terms of compatibility, coverage, effectiveness, and target do-
main (§2.2), CFG is basically a compiler-based, forward-edge-only,
coarse-grain CFI scheme, applicable both to userland and kernel
code. Backward-edge transfers (i.e., via ret instructions) are not
protected, effectively allowing the attacker to tamper with return
addresses. (Microsoft had developed an equivalent of CFG for re-
turn addresses, dubbed RFG—i.e., Return Flow Guard—, but never
released it due to its many limitations [67].) As far as forward-edges
goes, CFG treats every function, whose corresponding bit is asserted
in the bitmap, as belonging to the same equivalence class, thereby
enforcing a lax CFI policy that is known to be bypassable [73].

2.4.2 Clang/LLVM. Clang provides a range of CFI schemes (en-
abled via -fsanitize=cfi) for covering (indirect) control flow
transfers via function-pointer dereferences (C/C++), vtable dis-
patch (C++), and more. The majority of these schemes stem directly
from the work of Tice et al. [165], and, specifically, VTV and IFCC.
(Interested readers are referred to Appendix A.1 for more informa-
tion about how Clang-CFI confines forward-edge transfers.)

In terms of compatibility, coverage, effectiveness, and target
domain (§2.2), Clang-CFI is a compiler-based, forward-edge-only,
fine-grain (type-based) CFI scheme, applicable both to userland [22]
and kernel code [104]. Backward-edge transfers (i.e., via ret instruc-
tions) are not protected, thereby allowing the attacker to tamper
with return addresses. As far as forward-edge confinement goes,
Clang-CFI relies on (i.e., requires) link-time optimization (LTO) in
order to [43]: (1) precisely identify (and analyze the type signatures
of) all address-taken functions and function pointers (or vtable
entries) involved in computed branches; (2) perform symbol man-
gling (FUNC { FUNC.cfi, call FUNC { call FUNC.cfi) in all
instances of case (1) above; and (3) instrument indirect call sites.

3 THREAT MODEL
3.1 Adversarial Capabilities
We assume an attacker who is aiming at hijacking the control flow
of (vulnerable) programs by exploiting memory errors [169] in
their respective codebases. Specifically, we allow the attacker to
(ab)use one or many spatial/temporal [122, 123] memory errors,
chain them together (if necessary and/or possible), and, in general,
take advantage of them as (and when) needed to construct arbitrary
write and arbitrary read exploitation primitives for tampering with
code pointers [143]. Formally, we consider an attacker who is able
to disclose/corrupt the contents of any readable/writeable memory
location in the target (virtual) address space [177], multiple times
(if needed), and at arbitrary times during program execution.

FineIBT RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong

Lastly, in the case of memory corruption, we assume that the
attacker can overwrite memory content(s) with arbitrary values. In
terms of adversarial capabilities, our threat model is on par with
the current state-of-the-{art, practice} regarding CFI [33, 43, 116].

3.2 Hardening Assumptions
We assume an x86 platform with non-executable memory [103] and
a codebase that properly enforces the W^X policy [130]—i.e., code
injection [84] is not a viable option for our adversary. We also as-
sume a CPU that supports Intel CET [46, 48, 154] (e.g., ‘Tiger Lake’
or later). CET transparently protects return addresses (i.e., backward-
edge transfers) against corruption, via means of hardware-isolated
shadow stacks (§2.3). Note that protecting backward-edge control-
flow transfers is imperative (and a precondition) for any fine(er)-
grain CFI scheme [36, 167]. Lastly, we assume that IBT (§2.3) is used
for confining forward-edge transfers (i.e., via function pointers or
dynamic dispatch tables) to code locations marked with endbr. We
also assume proper OS/system and toolchain support for Intel CET
(§2.3). Turning “off” CET, or disabling IBT/shadow stacks, is not
considered within scope.

Given the hardening assumptions above, an attacker can still tam-
per with forward-edge transfers, and perform code reuse in a {JOP,
COP}-like [27, 39, 73] fashion: with IBT, the resulting (coarse-grain)
CFI scheme can, at most, confine forward-edge transfers to (all)
address-taken function-entry points (§2.2)—and, to make matters
worse, the above set includes every (code) symbol with non-local
linkage (e.g., every exported function) as well [119] (§2.3), resulting
in a loose CFI policy that provides limited protection [73]. All other,
standard hardening features (e.g., ASLR [68], stack-smashing pro-
tection [50]) are orthogonal to the scheme(s) we propose; we do not
require nor preclude them. The same is also true for less-widespread
mitigations, like code randomization/diversification [91, 95, 177]
and protection against data-only attacks [143].

4 DESIGN
4.1 Overview
4.1.1 Synopsis. FineIBT is a new CFI enforcement scheme that
focuses on performance, support for fine-grain policies across dif-
ferent architectures, and compatibility with other defenses, such
as execute-only memory. It achieves this by augmenting existing
hardware-based, forward-edge CFI schemes with compact IRMs
to enforce fine-grain policies in lieu of what would typically be
coarse-grain policies. Careful consideration was given to the design
of FineIBT’s IRM to ensure optimal performance (§4.3) and flexi-
bility. Further, FineIBT securely supports cross-DSO function calls
(§4.4) and the ability to debloat libraries at runtime, by refining
equivalence classes of indirect branch targets (§4.5).

4.1.2 Approach. FineIBT is a CFI enforcement scheme that is de-
signed for increasing the effectiveness of hardware-based, forward-
edge control-flow confinement mechanisms, including, but not
limited to, IBT (§2.3). Under IBT (§3), an attacker who is able to
tamper with forward-edge transfers can still “bend” [36] the con-
trol flow towards any of the valid/allowed function-entry points
marked with endbr, because the CPU cannot differentiate among
different types of endbr-marked code locations.

IBT-based CFI is analogous to Microsoft CFG, less stringent
than Clang-CFI (§2.4), and prone to COP-style code reuse [36, 73].
FineIBT aims at providing the apparatus for improving the preci-
sion of the enforced CFI policy, when IBT is used, by instrumenting
the respective code with IRMs that reduce the valid/allowed tar-
gets of indirect forward-edge transfers. Advanced static and/or
dynamic analyses (hardware-assisted too [59, 71, 80, 82, 166]) that
are used for pruning the set of allowed targets per indirect control
flow transfer, typically via means of enhanced points-to [59, 60, 82,
97, 127, 173], type [78, 102, 120, 165], and class hierarchy [34, 61,
81, 134, 135, 185] inference, are orthogonal to FineIBT. FineIBT
focuses solely on how to enforce (in an effective and performant
manner) a finer-grain CFI policy, which can be generated by any
(program analysis) technique, atop IBT. In what follows, we assume
that IBT/FineIBT is added to target code via means of compiler-
based instrumentation (§2.3). However, this is not a hard require-
ment, as recent advances in binary code rewriting (i.e., frameworks
like Egalito [178], RetroWrite [58], BinRec [20]) allow retrofitting
binary-only software with support for IBT/FineIBT.

We designed our IRM code to be: (1) compact, and thereby incur
negligible runtime and memory overhead; and (2) generic, so as
to support a range of different CFI policies, such as arity-based
CFI (i.e., still coarse-grain but more precise than vanilla IBT) [168],
strict/relaxed type-based CFI (e.g., à la Clang-CFI; fine-grain) [165],
or even finer-grain (and advanced) policies, like context-/path-
sensitive CFI [59, 166] andMLTA-based CFI [102], which can reduce
the number of valid/allowed targets by up to 98%, or UCT-based
(i.e., unique code target) CFI [82] that results in a single target per
indirect control-flow transfer. Crucially, the IRM code of FineIBT
is agnostic to the exact policy that is enforced. In other words, de-
spite whether we are enforcing, say, arity- or MLTA-based CFI, the
respective IRM code is exactly the same, hence completely decou-
pling the associated runtime and memory overhead(s) from the
effectiveness (i.e., strictness) of the selected policy. Lastly, in an-
tithesis to earlier CFI schemes [12, 161], the IRM code of FineIBT
is compatible with execute-only memory [45], allowing the use of
FineIBT with leakage-resilient code diversification [30, 51, 139].

4.2 Foundational FineIBT Instrumentation
Listing 1 illustrates FineIBT’s IRM code in its most basic form.
Function main contains an indirect forward-edge transfer (ln. 4),
while func0 and func1 are address-taken functions—and hence
potential targets of the indirect call instruction in main. Based on
the above, IBT instruments the prologue of func0 and func1, with
endbrs, confining the indirect branch in main (ln. 4) to func0 (ln. 8)
or func1 (ln. 15). In contrast to state-of-practice CFI (e.g., Clang-
CFI [165], Microsoft CFG [116]), FineIBT instruments both the
callers and the callees involved in indirect forward-edge transfers.
Specifically, indirect call sites (i.e., callers) are instrumented with
a single mov instruction that loads an integer value to a general-
purpose, volatile (e.g., caller-saved) register. In the example above,
the indirect call instruction in main (ln. 4) is instrumented with a
mov instruction that loads the value 0xc00010ff to register %eax
(ln. 3). Moreover, every function, say, FUNC, which is instrumented
with an endbr has its prologue code “moved” under the symbol
FUNC_entry that has the same visibility as FUNC (ln. 13, ln. 20).

RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong A. J. Gaidis, J. Moreira, K. Sun, A. Milburn, V. Atlidakis, and V. P. Kemerlis

1 main: /* caller */
2 ...
3 mov $0xc00010ff, %eax /* SID = 0xc00010ff */
4 call *%rcx
5 ...
6 call func1_entry
7 ...
8 func0: /* callee */
9 endbr64
10 sub $0xc00010ff, %eax /* SID = 0xc00010ff */

11 je func0_entry

12 hlt
13 func0_entry:
14 ...
15 func1: /* callee */
16 endbr64
17 sub $0xbaddcafe, %eax /* SID = 0xbaddcafe */

18 je func1_entry

19 hlt
20 func1_entry:
21 ...

Listing 1: Basic FineIBT IRM code (caller-callee) in x86-64.

Next, FineIBT inserts three instructions between the endbr and
the respective function prologue: a sub instruction, which sub-
tracts a value from the general-purpose volatile register (ln. 10,
ln. 17); a je (direct conditional branch) instruction (ln. 11, ln. 18);
and a (single-byte) hlt (0xf4) instruction (ln. 12, ln. 19). Lastly,
direct call targets are replaced with their *_entry counterparts,
effectively bypassing completely both the instrumentation of IBT
and FineIBT (ln. 6; call func1 { call func1_entry)—this way
FineIBT has zero impact on direct call instructions.

We also refer to the integer value loaded-in/subtracted-from
%eax (ln. 3, ln. 10/ln. 17) as set ID (SID). In particular, SIDs are used
for: (a) assigning (address-taken) functions to equivalence classes;
and (b) associating indirect call sites with their equivalence class. In
the example above, func0 is mapped to an equivalence class whose
SID = 0xc00010ff (ln. 10), func1 is mapped to a class whose SID
= 0xbaddcafe (ln. 17), and the indirect call (ln. 4) is associated
with the same equivalence class of func0.

Based on the above, FineIBT bolsters IBT as follows: first, the
SID 0xc00010ff is loaded in %eax (ln. 3), right before executing
the indirect call (ln. 4); because of IBT, the indirect call (in main)
is only allowed to transfer control to func0 (ln. 8) or func1 (ln. 15).
Next, if the indirect call rightfully branches to func0, then the sub
instruction (ln. 10) will subtract the SID value 0xc00010ff from
%eax, which, in turn, will result in the subsequent branch (ln. 11,
je func0_entry) to be taken, skipping the hlt instruction and
reaching the actual prologue of func0; else, if the indirect call
branches to func1, IBT will still allow the corresponding control
flow transfer to take place (i.e., func1 contains an endbr), but the
subsequent sub-je instruction pair will result in executing the hlt
instruction, as the SID of func1 (0xbaddcafe) does not match the
one loaded in %eax (0xc00010ff, ln. 3).

1 .func0_fineibt_coldpath:
2 ... /* arg0, ..., argn */

3 call __fineibt_chk_fail@PLT
4 func0: /* callee */
5 endbr64
6 sub $0xc00010ff, %eax /* SID = 0xc00010ff */

7 jne .func0_fineibt_coldpath
8 func0_entry:
9 ...

Listing 2: Custom error-handling FineIBT IRM code.

4.2.1 Effectiveness. The net effect of the above is the refinement
of the coarse-grain policy enforced by (the hardware-based CFI
scheme) IBT, which allows both func0 and func1 to be valid targets
(of the indirect call instruction in main; ln. 4), to a more fine-
grain (software-assisted) one that includes func0 only. Note that
this refinement process is controlled solely by the selection of the
respective SID values. The user of FineIBT can select the SID values
accordingly, in order to implement stringent CFI policies atop IBT,
like arity- [168], type- [165], MLTA-based [102] CFI, etc. Lastly, note
that SIDs are 4 bytes (32-bit) long, effectively allowing for more
than 4 billion equivalence classes.

4.2.2 Compatibility. In contrast to various state-of-practice CFI
schemes (e.g., Clang-CFI), which mandate LTO support, FineIBT
imposes zero additional requirements to the process of building
(and hardening) a particular codebase with IBT—unless LTO is
required by the underlying program analysis technique(s) used
for selecting SIDs. This allows every translation unit to be instru-
mented independently and “as is,” easing the adoption of FineIBT.
Moreover, by having the IRM logic “split” between caller-callee
code, FineIBT allows for incremental deployment, as certain ap-
plications (i.e., callers) can be hardened first but still interoperate
with unhardened libraries (i.e., callees)—at the expense of reduced
protection, of course. Note that the use of LTO has various adverse
effects [17]: it mixes together program and library code, into one big
“blob”, preventing library code from being updated independently
(i.e., without recompiling everything).

4.2.3 Target Domain. The IRM code of FineIBT can be used ver-
batim in every setting that IBT is available at: e.g., userland code,
kernel code [121], or even enclave (SGX) code (§2.3). In this work,
we study FineIBT in the context of userland code.

4.3 Performance Considerations
The performance (overhead) of FineIBT is directly related to the
size and structure of the IRM code.

4.3.1 CPU Front-end and I-Cache. We designed the SID-based
checking logic of FineIBT (§4.2) so that it is friendly to the CPU
front-end (i.e., instruction fetch and decoding unit) and instruc-
tion cache (I-Cache) [47]. Specifically, in x86-64, the IRM code of
FineIBT consists of 5 bytes per every indirect call site (mov $SID,
%reg; caller), and 8 bytes per every endbr-marked code location
that is instrumented accordingly (sub-je-hlt; callee)—12 bytes, in
total, if we also consider the size of the endbr instruction (4 bytes).

FineIBT RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong

The additional pressure of such a caller-callee (i.e., split) instru-
mentation scheme in the CPU front-end, and I-Cache, is (consider-
ably) less than a scheme like Clang-CFI, which requires 21 bytes
of additional code per indirect call site, as well as 8 bytes per
trampoline entry (see Listing 5 in Appendix A.1). (Microsoft CFG
is also caller-heavy [24].)

4.3.2 Instruction Selection. Compilers typically generate code that
uses the xor instruction/idiom to implement comparisons that test
for (non-)equality [62]. This would nominally result in an xor in-
struction in ln. 10/17 of Listing 1, which would perform the same
SID-based check with the instrumentation described in Section 4.2.
However, during the preliminary evaluation of FineIBT, we no-
ticed that xor-je is an instruction pair that is not macro-fused
(i.e., merged to a single 𝜇op [44]), in antithesis to sub-je, which
does get macro-fused in modern Intel CPUs. sub-je leads to (1) in-
creased instruction decoding throughput and (2) lower execution
latency [47], and we hence force FineIBT to generate this instruc-
tion pair (or sub-jne) in the IRM code. Additionally, we opted to
use sub over cmp as sub also clears the SID register, preventing SID
reuse in the event that an indirect branch is not prefixed with a
SID-set instruction.

4.3.3 Custom Error-handling Code. Whenever a runtime policy
violation occurs, FineIBT results in executing the (single-byte) hlt
instruction (§4.2), which, in turn, causes a #CP exception to be
raised. If terminating the victim process abruptly is not preferable,
FineIBT also supports executing a custom violation/error handler.
However, invoking such a handler requires (at least) 5 bytes, for
the encoding of a (direct) call instruction, plus additional bytes
for argument passing (should the error handler function receive
any arguments). Replacing a 1-byte (hlt) instruction, in the IRM
code of FineIBT, with a 5-byte instruction stream (at minimum),
incurs additional, unnecessary pressure on the CPU front-end and
I-Cache, as it pollutes hot paths with instructions that will never
execute under normal circumstances.

To alleviate the performance impact of the above, we support an
alternative IRM instrumentation, shown in Listing 2, which covers
cases of error-handling code that require multiple bytes. Specifically,
the multi-byte instruction stream that replaces hlt (ln. 2–ln. 3) is
placed outside the body of the respective function, under the label
*_fineibt_coldpath. In addition, the sub-je instruction pair is
replaced with sub-jne, which performs the SID-based check, as
before, and branches to *_fineibt_coldpath in case of a violation;
else, the control falls-through to *_entry. Note that sub-jne is
also macro-fused, while the symbol of the corresponding function
(e.g., func0) retains Intel’s alignment recommendation of being
at or near a 16-byte boundary [47]. Lastly, we choose to place
*_fineibt_coldpath “above” the function-entry point so as to use
the compact, 2-byte encoding of jne.

4.4 Security Considerations
The x86-64 ABI [21] specifies a new PLT format to support IBT,
which grossly increases the set of allowed branch targets. (Inter-
ested readers are referred to Appendix A.3 for more details regard-
ing the IBT PLT/GOT mechanism.)

1 PLT0: shl $0x20, %rax
2 or $SID, %rax
3 pushq GOT+8(%rip) /* GOT[1] */
4 jmp *GOT+16(%rip) /* GOT[2] */
5 nopw %cs:0x0(%rax,%rax,1) /* PAD */
6 ...
7 PLT4: endbr64
8 cmp $SID, %eax
9 pushq $0x3
10 xchg %ax, %ax /* PAD */
11 je PLT0
12 hlt
13 nopw 0x0(%rax,%rax,1) /* PAD */
14 ...
15 FPLT4: mov $SID, %eax
16 jmp *fsym4@GOT(%rip) /* GOT[6] */
17 nopl 0x0(%rax,%rax,1) /* PAD */
18 ...
19 ATFPLT4: endbr64
20 sub $SID, %eax
21 je FPLT4
22 hlt
23 data16 nopw %cs:0x0(%rax,%rax,1) /*PAD*/
24 nopl (%rax) /* PAD */

Listing 3: FineIBT PLT (x86-64 ABI-compatible).

4.4.1 FineIBT PLT. We propose an improved PLT scheme to be
usedwith FineIBT that (a) reduces the IBT PLT over-approximation
by up to a factor of 2 (see §A.3), (b) transparently supports both
lazy and eager binding, (c) allows for SID-based checking, and
(d) is compatible with the x86-64 ABI [21]. (Note that the latter
is important as it enables the use of existing tools, like the GNU
Binutils, with FineIBT-hardened ELF files.)

Listing 3 illustrates FineIBT’s new, improved PLT format, which
consists of three tables: (1) PLT0–PLTn, mapped at the .plt ELF sec-
tion; (2) FPLT1–FPLTn, mapped at the .plt.fineibt ELF section
(new); and (3) ATFPLT1–ATFPLTn, mapped at the .plt.atfineibt
ELF section (new). Cross-DSO function calls (via the PLT) are linked
with entries in .plt.fineibt. So, if the current DSO needs to, say,
invoke fsym4, which is located in a different .so, then the respec-
tive (direct) callwill be as follows: call fsym4@FPLT—i.e., a direct
branch to symbol FPLT4 (ln .15).

.plt.fineibt is analogous to .plt.sec of IBT PLT (see §A.3;
i.e., it includes an entry for each external symbol of type FUNC),
but with the following differences: first, entries in .plt.fineibt
do not contain endbr instructions, as they are explicitly targeted
by direct call instructions only; second, given that every slot in
.plt.fineibt includes a memory-indirect jmp, via GOT, each such
entry includes the caller-part of FineIBT’s IRM code (ln. 15, . . .).

As before, the memory-indirect jmp instructions in .plt.fine-
ibt will either transfer control to the corresponding symbols in
foreign DSOs, or to an entry in .plt (lazy binding)—every entry
in .plt.fineibt has an associated entry in .plt (FPLTn { PLTn;
ln. 7, . . .). However, as .plt entries can be the target of indirect jmp

RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong A. J. Gaidis, J. Moreira, K. Sun, A. Milburn, V. Atlidakis, and V. P. Kemerlis

instructions (from .plt.fineibt), they include the callee-part of
FineIBT’s IRM code. Lastly, every address-taken PLT slot has an
associated entry at .plt.atfineibt for handling indirect control-
flow transfers to it. Such entries are targets of indirect call in-
structions, and include the callee-part of FineIBT’s IRM code; after
performing FineIBT’s SID-based check, they branch to the corre-
sponding entry in .plt.fineibt, which, in turn, transfers control
to the target symbol in a foreign DSO, or the respective .plt slot.

When an unresolved symbol is encountered for the first time, in
the case of lazy binding, the dynamic linker/loader is invoked from
PLT0 to resolve and indirectly branch to the target symbol. This
requires two SIDs be passed to the dynamic linker: one to verify
the callee of the resolver code (i.e., PLT0) and another to verify
the callee of the resolved symbol (i.e., the resolver code itself). We
solve this problem by preserving the symbol’s SID in its respective
.plt slot (using cmp instead of sub for the SID check; ln. 8) before
jumping to PLT0, where the preserved and new SID values are made
to share the upper and lower 32 bits of %rax, respectively (ln. 1–2).
The dynamic linker can then use the lower 32 bits of the register
for its SID check and pass the upper 32 bits of %rax to the resolved
symbol for its own, subsequent SID check.

Note that although there is a 1-1 correspondence between slots in
.plt.fineibt and .plt, only a subset of slots in .plt.fineibt (if
any) have associated entries in .plt.atfineibt—i.e., the ones that
are truly address-taken in the current DSO, effectively debloating
the IBT PLT from excessive endbr instructions that grossly increase
the set of allowed branch targets (see §A.3). Also, because of the
above table relationships, the SID value in every FPLT slot should
be identical to the SID value in its associated PLT slot (and ATFPLT
slot, if one exists), irrespective of the sensitivity of the SID-selection
mechanism/analysis. Finally, note that the proposed PLT format
supports both lazy and eager binding seamlessly.

4.4.2 Compact FineIBT PLT. If RELRO (relocation read-only; -z
relro or -Wl,-z,relro) [147] is configured to operate in “full”
mode (i.e., by enabling BIND_NOW as well; -z now or -Wl,-z,now),
the dynamic linker/loader will resolve all GOT entries at load time
and write-protect .got, preventing an attacker from tampering
with the GOT mechanism completely (and the binding process, in
general). FineIBT can take advantage of the above, and emit an
alternative, compact PLT as follows.

First, the .plt section is omitted entirely, as full RELRO effec-
tively results in eager binding (PLT0–PLTn will never be exercised).
Second, entries in .plt.fineibt are not instrumented with the
caller-part of FineIBT’s IRM code, while the respective memory-
indirect jmp instructions are prefixed with notrack [46], allowing
them to branch to (code) locations that are not necessarily endbr-
instrumented. Given that GOT is immutable, ld.so can safely
link each PLT-related GOT slot regarding foreign symbols with
their *_entry counterparts, effectively bypassing the callee-part
of FineIBT’s IRM code. This approach has the added benefit of
being slightly more performant than the original one (§4.2), as it
avoids the unnecessary execution of SID-based checks, when full
RELRO is enabled. Lastly, both our PLT schemes can co-exist in
the same address space and interoperate seamlessly. The compact
PLT scheme, however, requires an ld.so that knows how to handle
FineIBT-related *_entry symbols.

4.5 IBT-instrumentation Elision
As discussed in Section 4.4.1, every DSO (code) symbol with non-
local linkage will be endbr-instrumented (by IBT), and, conse-
quently, IRM-protected by FineIBT as well, as it may be linked-with
a PLT/GOT entry during load time. However, given an address space
instantiation, every such symbol will not end up being linked-with
PLT/GOT slots. For instance, glibc exports more than 1.5K sym-
bols of type FUNC (v2.31), but only a subset of these will end up in the
PLT/GOT slots of other DSOs or the main application executable.
(In fact, this is exactly what debloating systems rely on to remove
redundant code from shared libraries [16, 17, 144].)

4.5.1 NOPout. FineIBT includes a load-time feature, dubbed NOP-
out, which aims at eliding unnecessary endbr instructions from
DSOs, effectively reducing even further the set of allowed (indirect)
branch targets, irrespective of the underlying sensitivity of the
SID-selection mechanism/analysis. NOPout is meant to work best
with eager binding, but, in principle, the scheme can support lazy
binding as well (albeit with additional runtime overhead).

Specifically, FineIBT notes every (a) non-address-taken, (b) non-
local, and (c) FineIBT-protected symbol of type FUNC, in a special
ELF section (of type SHT_NOTE), dubbed .plt.nopout. During load
time, once the dynamic linker/loader has resolved every PLT/GOT
entry (for all DSOs loaded in the address space), ld.somay proceed
to implement NOPout as follows: for each entry in .plt.nopout
(for all loaded DSOs), ld.so checks if the respective entry is linked-
with some PLT/GOT slot; if not, then the endbr instruction, at the
prologue of the corresponding function, can be elided, via means
of code patching. Note that at this point, the execution of the main
application has not yet commenced, allowing us to avoid the cul-
prits of live code patching [177]. endbr instructions are replaced
with a 4-byte nop, while in the case of compact FineIBT PLTs
(§4.4.2), NOPout will effectively result in an address space instan-
tiation where only address-taken functions are IBT- and FineIBT-
protected, which is also the minimum set of code locations that
need to be hardened by CFI for the application to function properly.

4.5.2 Dynamically-loaded DSO Support. If NOPout is in effect, and
a DSO is dynamically-loaded, e.g., via dlopen, then certain endbr
instructions (in other DSOs) that were previously elided, may have
to be placed back—the newly-loaded DSO may link them in its own
PLT/GOT. Similarly, if dlsym is used to dynamically address-take
a function, then, again, if the endbr instruction in the prologue of
that function was previously elided, it now needs to be placed back.

However, placing back endbr instructions, while the application
is running, in a safe manner, requires special care; NOPout handles
such cases as follows. First, it identifies the memory page (4KB)
inside of which an endbr (or more) instruction(s) should be placed
back. Next, it creates a temporary copy of that page into a different
location in the address space, which is mapped as non-executable
(RW-). Then, the respective 4-byte nop instruction(s) are replaced
with endbr(s) in that copy, which is then mapped as read-only (R--).
After that, NOPout compares the contents of the page-copy with
the original page to verify that the only difference(s) stem from
nop { endbr. Lastly, if the above is true, it remaps the newly-
patched code over the original one, discarding at the same time the
latter and the temporary mapping.

FineIBT RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong

Note that during this task, NOPout processes .plt.nopout en-
tries directly from the respective ELF section, which is mapped
as read-only to prevent attackers from tampering with the live
patching capabilities of FineIBT.

5 IMPLEMENTATION
5.1 System Support
We used Intel’s official patches for the Linux kernel (v5.13) [49],
which provide support for Intel CET in userland. We slightly edited
the patchset to enable diagnostic messages during benchmarking.

5.2 FineIBT Toolchain
We implemented FineIBT as a set of modifications to the LLVM
toolchain (v12). Our prototype consists of (a) ≈700 C++ LOC added
to the LLVM compiler (llvm-{gcc, g++}) and (b) ≈200 C++ LOC
added to the LLVM linker (lld) to facilitate the instrumentation,
and optimizations, outlined in Section 4. (Note that our design is
not LLVM-specific; FineIBT can be easily ported to GCC or other
compiler toolchains/frameworks.) As far as (a) goes, we extended
LLVM’s MachineFunctionPass [100] to instrument function pro-
logues and call sites, accordingly (i.e., add FineIBT IRM code; see
§4.2 and §4.3); regarding (b), we added support for regular and
compact FineIBT PLTs in lld (see §4.4). Lastly, we used %r11d to
implement SID-based checking—the x86-64 ABI [21] defines %r11
as a scratch register, simplifying the handling of ASM code.

5.2.1 CFI Policies. We implemented the following CFI policies (to
demonstrate the ability of our flexible enforcement mechanism to
support different policies, ranging from coarser- to finer-grain):
(1) arity-based CFI [168]; (2) strict/relaxed type-based [165]; and
(3) MLTA-based [102]. In the case of (1) and (2), we rely on LLVM
type metadata to create the respective equivalence classes and
assign SIDs. In the case of (3), we added support to FineIBT for
leveraging the output of TypeDive [164] (i.e., an LLVM-basedMLTA
framework by Lu and Hu [102]) and assign functions to equivalence
classes based on the caller-callee pairs reported by the tool.

5.2.2 NOPout. We implemented NOPout in ≈800 C LOC. Our pro-
totype consists of a DSO (libnopout.so) that hooks the dynamic
linker/loader (ld.so), via preloading, for patching program code
accordingly (§4.5). We decided not to integrate NOPout in ld.so to
allow for seamless experimentation with different dynamic linker/-
loader implementations.

6 EVALUATION
We performed all our experiments on a host equipped with a 4-
core Intel Core i7-1185G7 3GHz CPU and 16GB of (LPDDR4) RAM,
running Void Linux [11]. All benchmarked applications, includ-
ing their (DSO) dependencies, were instrumented/hardened using
the prototype discussed in Section 5, built as position-independent
(-f{PIC, PIE}, -pie), and linked-with musl libc [7]—vanilla glibc
cannot be built (yet) with Clang/LLVM because of the extensive
use of {GCC, GNU}-specific features [112]. Moreover, all programs
were linked with full RELRO (-z relro -z now or -Wl,-z,relro,
-z,now) and use the compact FineIBT PLT (§4.4.2); a decision
largely motivated by musl’s lack of support for lazy binding [5].

Table 1: SPEC CPU2017 (SPECspeed Integer) results.

Benchmark IBT FineIBT Clang-CFI(§4.2) (§4.3)

600.perlbench 1.46% 1.51% ≈0% 1.17%
602.gcc 0.03% 0.12% 0.05% 0.6%
605.mcf 0.51% 3.67% 1.94% 2.04%
620.omnetpp ≈0% 0.91% ≈0% 6.57%
623.xalancbmk ≈0% 0.99% ≈0% 7.89%
625.x264 0.05% 0.29% ≈0% 0.93%
631.deepsjeng 0.03% 0.17% ≈0% ≈0%
641.leela ≈0% ≈0% ≈0% ≈0%
657.xz ≈0% ≈0% ≈0% 0.06%

Finally, dynamic frequency and voltage scaling (DVFS, Turbo
Boost) was disabled, while the CPUwas configured to constantly op-
erate at 3GHz in the C0 C-state, in order to minimize benchmarking
noise and facilitate reproducibility.

6.1 Performance
6.1.1 SPEC CPU2017. We used SPEC CPU2017 [31] to assess the
runtime slowdown that is incurred by FineIBT, as well as the im-
pact of the optimizations outlined in Section 4.3. We also compare
and contrast FineIBT to IBT and Clang-CFI. More specifically, we
used the SPECspeed 2017 Integer suite that contains 9 C/C++ ap-
plications and a Fortran program, which we excluded from our
benchmarks. Table 1 summarizes our findings. The 9 C/C++ appli-
cations (col. 1) were built natively, instrumented with IBT (col. 2),
hardened with the basic IRM code illustrated in Listing 1 (col. 3) and
the optimized IRM code shown in Listing 2 (col. 4), as well as pro-
tected with Clang-CFI (col. 5). Results (avg. over 10 runs, using the
refworkload) are reported as percentages atop the uninstrumented
baseline. (≈0% corresponds to < 0.01%.)

Notably, the -fsanitize-cfi-cross-dso flag was used when
building libraries and executables with Clang-CFI to allow the
CFI scheme to apply across DSO boundaries; otherwise, cross-
DSO calls are implemented as if the callee did not have Clang-
CFI support [43]. Additionally, 600.perlbench, 602.gcc, 605.mcf,
620.omnetpp, and 657.xz failed to run with Clang-CFI due to mis-
matched types—e.g., in 602.gcc_s, a function pointer rtx (*insn-
_gen_fn) (rtx, ...) is used to target functions without variable
arguments, such as rtx emit_move_insn_1 (rtx, rtx), which
results in a segmentation fault when invoked since there is no cor-
responding, type-matched entry in the enforcement mechanism’s
jump tables. We patched these 5 benchmarks to get type agreement
via casting or changing function signatures. Our changes do not
affect the behavior or functionality of the benchmarks, and the
patches were applied across all builds of SPEC (i.e., the uninstru-
mented baseline, IBT, the two FineIBT variants, and Clang-CFI).

IBT incurs negligible runtime overheads (0%–1.46%), which is on
par with Intel’s previously-reported results [2]. The basic FineIBT
IRM code incurs a moderate slowdown (0%–3.67%), whereas the
optimized one follows closely the performance of IBT, incurring
only 0%–1.94% overhead (+1.43% atop IBT in the worst case).

RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong A. J. Gaidis, J. Moreira, K. Sun, A. Milburn, V. Atlidakis, and V. P. Kemerlis

Table 2: Real-world application results.

Application IBT FineIBT (§4.3)

Nginx (1KB) ≈0% ≈0%
Nginx (100KB) 0.77% 1.92%
Nginx (1MB) ≈0% 0.11%

Redis (GET) 0.39% 1.17%
Redis (SET) 0.39% 1.17%

MariaDB 0.55% 0.60%

SQLite ≈0% 0.36%

Both FineIBT schemes are friendly to the CPU front-end and
I-Cache, and exploit macro-fusion, resulting in minimal slowdowns
(§4). However, the latter (col. 3, optimized IRM scheme) removes
the error-handling code completely from hot paths, resulting in
even lower overheads (atop IBT).

In general, as is the case with IBT, the runtime slowdown of
FineIBT is (positively) correlated with the number of address-taken
functions and indirect call sites. Furthermore, the (code) size of
indirectly-invoked functions affects the runtime overhead too—
larger functions tend to amortize the cost of FineIBT’s IRM code. In
antithesis, Clang-CFI’s overhead ranges between 0%–7.89%, which
demonstrates the benefits of our split-instrumentation (i.e., caller-
callee), hardware-assisted CFI scheme. Lastly, note that the above
overheads are orthogonal to the underlying CFI policy—i.e., no
matter how strict or lax the enforced CFI scheme is, FineIBT will
always incur the same overhead(s), allowing for predictable runtime
(performance) behavior.

6.1.2 Real-world Applications. In addition to SPEC CPU2017, we
also used the following set of real-world applications to further
investigate the runtime behavior of FineIBT: Nginx (v1.20.2) [8],
Redis (v6.0.9) [9], MariaDB (v10.5.10) [6], and SQLite (v3.38) [10].
Results (avg. over 20 runs) are reported as percentages atop the
uninstrumented baseline. (≈0% corresponds to < 0.01%.) Table 2
summarizes our findings—FineIBT (col. 3) corresponds to the opti-
mized IRM variant discussed in Section 4.3.
Nginx. We used the wrk [4] benchmarking tool to generate HTTP
requests, continuously for 1 minute, for three different file sizes:
1KB, 100KB, and 1MB. (The served files were filled with random
data.) Both nginx and wrk ran on the same host, connected via the
loopback (lo) virtual network interface to minimize I/O latency
and increase CPU utilization. Furthermore, wrk was configured to
use 4 execution threads, each making 128 (simultaneous) HTTP
reqs, while nginx used 4 worker threads in the case of 1KB and
100KB file reqs and 2worker threads in the case of 1MB file reqs. We
used the above settings to saturate our CPU (max. utilization) and
avoid I/Omasking the overhead(s) of FineIBT. IBT incurs negligible
throughput (tput) degradation (0%–0.77%), while FineIBT’s tput
degradation ranges between 0%–1.92% (+1.15% atop IBT in the
worst case). Note that these are worst-case overheads, as if the CPU
is not saturated the impact of FineIBT is barely measurable.

Redis.We used the memtier_benchmark [148] tool to generate a
stream of SET and GET reqs for a 32-byte object, on a 1 : 10 ratio, con-
tinuously for a 1-minute duration. Moreover, memtier_benchmark
was configured to use two execution threads, each making (up to)
128 simultaneous reqs, while redis-server used a single worker
thread. Both processes executed on the same host and performed I/O
over lo. (Again, these parameters resulted in max. CPU utilization.)
IBT incurs negligible tput degradation (0.39%), while FineIBT’s
tput degradation is 1.17% (+0.78% atop IBT).
MariaDB.We used sysbench [3] to generate an online transaction
processing (OLTP) workload (i.e., the oltp_read_write bench-
mark), and tuned mariadb according to the project’s recommen-
dations [110]. We ran oltp_read_write, continuously for 5 min-
utes, performing transactions on a single table of 2-million rows
(≈500MB of data). sysbench was configured to use 64 execution
threads, while mariadb used 6 worker threads to saturate the CPU.
Both processes executed on the same host and performed I/O over
lo. FineIBT (IBT) incurs negligible tput degradation: 0.60% (0.55%).
SQLite. We used the SQLite Speedtest benchmark [157], which
stress-tests sqlite and reports the run time for performing a se-
ries of DB operations. The benchmark was configured to use an
in-memory database to prevent I/O from masking overhead and
default settings for all other options. Furthermore, Speedtest is dis-
tributed as a C file with the SQLite source code, and is meant to
be compiled and then linked with sqlite to create a single binary
that contains the benchmark driver and the application. To ensure
that only the application is instrumented, preventing additional,
unwanted overhead from the benchmark driver, we patched the
driver’s source code, adding a nocf_check attribute to each func-
tion. This attribute prevents the compiler from adding: (1) IBT or
FineIBT instrumentation to function prologues, and (2) FineIBT
instrumentation at indirect branch sites. Both IBT and FineIBT
incur a negligible runtime slowdown (< 0.5%).

6.1.3 Code-size Increase. We measured the impact of FineIBT’s
instrumentation on the code sections (i.e., sections marked with
SHF_ALLOC and SHF_EXECINSTR flags) of the resulting ELF files, us-
ing the binaries of SPEC CPU2017 and those of the 4 real-world
applications above, including all their DSO dependencies. Table 3
summarizes our findings. Unsurprisingly, IBT incurs a negligible
code-size increase (< 1% on avg.), as it only requires instrument-
ing address-taken functions and PLT entries with endbr instruc-
tions (4 bytes). FineIBT results in a larger increase: in the case
of the 4 real-world applications, the space overhead of FineIBT
ranges between 7.71%–18.11%, whereas in SPEC CPU2017 it ranges
between 2.27%–19.05%. On average, FineIBT-instrumented bina-
ries were smaller than their Clang-CFI counterparts across the
SPEC CPU2017 binaries, whose space overhead ranges between
2.13%–23.21%. Most large percentage increases in FineIBT- and
Clang-CFI-instrumented binaries are mainly due to instrumentation
getting added to smaller programs, where the size of the instru-
mentation relative to the size of the binary is considerable and thus
more apparent. Notably, we also used the error-handling variant of
FineIBT (§4.3.3), which represents the worst-case space overhead
for FineIBT as the instrumentation includes additional instructions
to setup and call an error-handling function.

FineIBT RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong

Table 3: Code-size increase for IBT, FineIBT, and Clang-CFI.

Application Vanilla IBT FineIBT (§4.3) Clang-CFI
KB KB %-Chg KB %-Chg KB %-Chg

Redis (Total) 2787 2808 0.74% 3292 18.11% – –
redis-server 1890 1905 0.80% 2248 18.90% – –
libc.so 897 903 0.60% 1045 16.44% – –

SQLite (Total) 2237 2247 0.44% 2409 7.71% – –
speedtest 1340 1344 0.33% 1364 1.86% – –
libc.so 897 903 0.60% 1045 16.44% – –

Nginx (Total) 7005 7064 0.83% 7842 11.94% – –
nginx 1606 1619 0.81% 1714 6.70% – –
libpcre.so 576 577 0.11% 582 0.97% – –
libssl.so 649 660 1.67% 726 11.83% – –
libcrypto.so 2880 2905 0.86% 3344 16.10% – –
libz.so 130 132 0.95% 144 10.04% – –
libGeoIP.so 266 268 0.82% 288 8.32% – –
libc.so 897 903 0.60% 1045 16.44% – –

MariaDB (Total) 33422 33650 0.68% 37821 13.16% – –
mariadbd 26765 26924 0.60% 30144 12.63% – –
libpcre2-8.so 655 658 0.43% 670 2.23% – –
libbz2.so 76 77 1.09% 81 6.62% – –
libaio.so 4 4 4.94% 6 61.03% – –
libz.so 130 132 0.95% 144 10.04% – –
libssl.so 649 660 1.67% 726 11.83% – –
libcrypto.so 2880 2905 0.86% 3344 16.10% – –
libc.so 897 903 0.60% 1045 16.44% – –
libc++.so 987 1005 1.83% 1248 26.52% – –
libc++abi.so 327 330 0.84% 354 8.31% – –
libunwind.so 52 53 1.41% 59 14.15% – –

600.perlbench 3685 3696 0.30% 3865 4.89% 3928 6.59%
602.gcc 12082 12104 0.18% 12356 2.27% 12339 2.13%
605.mcf 923 929 0.63% 1072 16.15% 1131 22.59%
620.omnetpp 4244 4312 1.60% 4875 14.87% 5097 20.10%
623.xalancbmk 6805 6907 1.50% 7647 12.37% 8385 23.21%
625.x264 1588 1596 0.48% 1750 10.16% 1829 15.12%
631.deepsjeng 2390 2417 1.14% 2835 18.61% 2641 10.51%
641.leela 2366 2395 1.23% 2816 19.05% 2623 10.88%
657.xz 1059 1065 0.61% 1211 14.42% 1275 20.44%

6.2 Security
6.2.1 ConFIRM. We evaluated the effectiveness (i.e., security) and
compatibility of FineIBT using the Linux-related tests [1] from
the ConFIRM CFI benchmarking suite [180]. Table 4 summarizes
our findings. FineIBT successfully passed all (Linux) tests with the
exception of jit, which involved an indirect branch to JIT-compiled
code. FineIBT is compiler-based, and hence the respective code was
not instrumented with FineIBT IRMs—a problem easily resolved
by making JIT engines FineIBT-aware.

Moreover, while FineIBT passed the compatibility check for the
multithreading test, running it without issues, FineIBT failed the
security check. To test security, multithreading spawns attacker
and victim threads and attempts to have the attacker overwrite a
return address of the victim thread. Since FineIBT does not provide
return address protection the attack succeeds unless FineIBT is
paired with a backward-edge defense such as Intel CET’s shadow
stack. Lastly, recall that FineIBT does not propose nor rely on a
specific CFI policy; FineIBT is an enforcement mechanism for a
wide range of CFI policies, which allow for different security vs.
compatibility trade-offs. Earlier works have extensively investigated
the security of different CFI policies (coarse- vs. fine- vs. finer-grain)
and hence we do not attempt to repeat them here (see §2.2).

Table 4: ConFIRM [1] results.

Test Result Description
callback ✓ Callbacks support
code_coop ✓ COOP attack [151] resilience
convention ✓ Different x86 calling conv. support
cppeh ✓ C++ exception handling support
data_symbl ✓ Import/export data sym. handling
fptr ✓ Indirect function call support
jit ✗ Runtime-generated code support
load_time_dynlnk ✓ Load-time function resolution
mem ✓ Memory mgmt. API support
multithreading ✓ Concurrent thread exec. support
pic ✓ PIC/PIE support
ret ✓ Return-address validation
run_time_dynlnk ✓ Run-time function resolution
signal ✓ Signal handling support
switch ✓ switch-based CF support
tail_call ✓ Tail-call optimizations
unmatched_pair ✓ Unmatched call/ret pairs
vtbl_call ✓ Virtual function support

Table 5: IBT-instrumentation elision (NOPout) results.

Application AT-elided Pages KB

redis-server 858 (19.05%) 206 844
sqlite 896 (34.07%) 165 676
nginx 2873 (19.33%) 606 2482
mariadbd 17291 (44.98%) 1915 7844

600.perlbench 942 (35.19%) 246 1008
602.gcc 3646 (67.71%) 665 2724
605.mcf 83 (4.57%) 45 184
620.omnetpp 5623 (71.03%) 405 1659
623.xalancbmk 8023 (77.78%) 644 2638
625.x264 302 (14.82%) 76 311
631.deepsjeng 1690 (42.45%) 189 774
641.leela 1722 (42.91%) 194 795
657.xz 176 (9.17%) 59 242

6.2.2 NOPout. We applied NOPout on the four real-world applica-
tions (§6.1.2), as well as on the 9 C/C++ benchmarks of the SPEC-
speed 2017 Integer suite (§6.1.1), including all their DSO dependen-
cies, to assess the impact of endbr elision (§4.5.1). (NOPout removes
endbr instructions, via code patching, resulting in an address space
instantiation where only the minimum set of address-taken func-
tions are protected for the application to function properly.)

Table 5 summarizes our findings. Col. 2 corresponds to the num-
ber of address-taken (AT) functions that are removed from the set(s)
of allowed branch targets, post load-time. The percentages in paren-
theses indicate by how much the total set of endbr-protected func-
tions was reduced, or, in other words, how much more stringent/-
secure the enforced CFI policy will be. Col. 3 shows the number of
4KB pages that the respective AT functions span, while col. 4 out-
lines thememory overhead that NOPout incurs due to code patching:
i.e., when patching shared code pages, COW (copy-on-write) kicks
in, effectively duplicating the target page(s). The additional memory
required by NOPout ranges between 184KB–7844KB for reducing
the valid targets by 83–17291 functions, respectively.

RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong A. J. Gaidis, J. Moreira, K. Sun, A. Milburn, V. Atlidakis, and V. P. Kemerlis

1 main: /* caller */
2 ...
3 movz w9, #0x3a, lsl #16 /* SID = 0x3a0000 */
4 blr x0 /* x0 = &func */
5 ...
6 bl func_entry
7 ...
8 .func_finebti_coldpath:
9 ... /* arg0, ..., argn */

10 bl __finebti_chk_fail@PLT
11 func: /* callee */
12 bti c
13 subs w9, w9, #0x3a0, lsl #12 /* SID=0x3a0000 */

14 bne .func_finebti_coldpath
15 func_entry:
16 ...

Listing 4: FineIBT IRM code ported to ARM.

Currently, NOPout patches every required code page eagerly,
right after the loading process is completed (§4.5.1). In the future, we
plan on performing the patching lazily, as code pages are brought
into the page cache (via #PF exceptions), minimizing NOPout’s mem-
ory cost(s).

7 DISCUSSION
7.1 FineIBT on ARM-based Platforms
While the design of FineIBT (see §4) largely focuses on x86-64,
FineIBT is not limited to this architecture only. The concept(s)
behind FineIBT can be applied to any hardware-assisted, coarse-
grain, forward-edge CFI scheme that is similar to IBT.

ARMBTI (Branch Target Identification) is a CFI hardware feature
of AArch64, introduced in ARMv8.5 [98], which is analogous to
Intel IBT. It mandates that indirect branches must target a specific
instruction, namely bti, else a fault occurs. BTI does differ slightly
from IBT in that the bti instruction encodes an indirect branch
type as an operand, allowing only certain indirect control-flows to
target it; e.g., only indirect calls, and not indirect jumps, can target
bti c instructions; and vice versa for bti j.

Since BTI provides similar (control-flow) guarantees to IBT,
through the same mechanism (i.e., a “landing pad” instruction, bti),
we can easily port the IRM logic of FineIBT to ARM, as shown
in Listing 4: that is, by replacing each x86-64 instruction in the
FineIBT IRM code (see Listing 2) with an equivalent A64 instruc-
tion. However, due to instructions being fixed-length (4 bytes each)
in AArch64, the immediate-value operands needed for SID checking
are limited. For example, the movz instruction (ln. 3) only allows
16-bit immediate values, shifted left by an optional 16-bit offset1,
to be loaded onto a register. Similarly, the subs instruction (ln. 13)
used for SID comparison only allows subtraction with a 12-bit im-
mediate value (optionally left-shifted by 12-bits). To get a quantity
of unique SIDs equivalent to x86-64, additional instructions are
required, which we leave for future work to determine if necessary.

132- and 48-bit left-shift is also available, if the 64-bit instruction variant is used.

7.2 Resilience against Spectre
Indirect branch prediction can result in instructions getting tran-
siently executed at an incorrect (i.e., predicted) target; this can be
used by attacks such as Spectre-v2 (branch target injection). No-
tably, IBT partially mitigates these attacks by preventing or limiting
transient execution at indirect branch targets without an endbr
(§2.3.3). FineIBT can provide additional protection against such
attacks by limiting speculation at indirect targets for invalid control
flows (i.e., those which fail the SID check) both in the architectural
and speculative domains. However, the IRM code of FineIBT (§4.2,
§4.3) contains a conditional branch (je in Listing 1, jne in Listing 2)
that can be targeted by a Spectre-v1 attack [89], whereby the CPU
speculates beyond the SID check, transiently executing subsequent
instructions (i.e., function code under the *_entry label) when
there is a CFI violation.

To investigate the feasibility of the above threat, we mounted
a Spectre-v1 attack on FineIBT (on par with our threat model) to
measure: (1) the likelihood of transiently executing instructions
after the SID check; and (2) the size of the speculation window
(i.e., the number of transiently executed instructions) following the
SID check. Our attack is modeled after the following scenario. First,
an adversary provides input to the victim program to repeatedly
invoke a function indirectly, training the conditional branch predic-
tor to anticipate that FineIBT’s SID check will always pass. Second,
the adversary overwrites a (different) function pointer with the ad-
dress of the aforementioned (trained) function. Finally, the attacker
causes the invocation of the overwritten function pointer, which
will potentially result in the transient execution of the instructions
following FineIBT’s conditional branch, until the branch direction
and target are resolved, ultimately crashing the program as the SID
check fails architecturally. Depending on the transiently executed
instructions, the attacker may be able to leak information from the
process through micro-architectural side-channels [79].

A detailed description of our attack is available in Appendix A.4;
Table 6 (Appendix A.4) summarizes our findings. The results of
the experiment suggest an extremely low success rate, regardless
of whether the conditional branch is a je (Listing 1) or jne (List-
ing 2). Without any nop instructions padding the Spectre gadget,
we observed its transient execution 17 out of 10M attempts for both
je- and jne-based IRMs. With ≈14 nops of padding, this number
dropped to 0, and thus we estimate the speculative window size in
this scenario to be ≈15 bytes (13b of nops plus 2b for the mov).

Although this speculative window could theoretically still be
enough to leak information if combined with techniques such as
SMT contention [117], our results indicate that FineIBT imposes
meaningful restrictions on potentially-exploitable gadgets that oc-
cur after FineIBT’s prologue instrumentation, even in the face of
speculative CFI violations. Thus, we contend that FineIBT reduces
the speculative attack surface of a program.

7.3 Adoption
The release of Linux kernel v6.2 added a version of FineIBT tai-
lored for the kernel in addition to enabling kernel IBT by default
on supported (i.e., x86) platforms [107]. While this bodes well for
the adoption of the userland form of FineIBT presented in this
paper, it does not directly speak to the most significant barrier to

FineIBT RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong

adoption: the ABI changes required to securely support cross-DSO
function calls. We believe our proposed ABI changes will not im-
pede FineIBT’s adoption for three main reasons. First, our changes
are minimal when considered in tandem with the existing ABI
changes that were introduced to support IBT. With the IBT PLT as
a starting point, we merely add SID-checking code and rearrange
the existing instructions across three ELF sections—two sections
were already used by IBT PLT; we just added one more. Second,
ABI changes regarding the PLT are not uncommon: the ABI was
recently amended to accommodate the aforementioned IBT PLT,
as well as Intel’s Memory Protection Extensions (MPX) hardware
feature [21]. Third, the behavior of the FineIBT PLT is the same
as the standard PLT, supporting both eager and lazy binding trans-
parently (i.e., the target of the cross-DSO function call need not be
instrumented with FineIBT).

7.4 Limitations and Future Work
7.4.1 Context Sensitivity. The current design of the FineIBT IRM
code only considers the origin of the most recent indirect branch
when deciding whether control flow is legal—i.e., a decision is made
based on a single SID loaded into a register by the caller. Considering
a history of multiple indirect branches can further improve the
effectiveness of the scheme for a given policy by providing more
context for decision-making [166]. In order to record additional
information, making FineIBT context-aware, the following changes
can be made to our existing design: (1) SID values can be shortened
to allow storage of multiple SIDs in a register—e.g., two 4-byte
SIDs { eight 1-byte SIDs—; (2) the register that holds SIDs can
be preserved to prevent non-FineIBT functionality from trashing
the saved context; (3) the caller-side FineIBT IRM can be modified
to store multiple SIDs in a register, similar to our FineIBT PLT
instrumentation that handles delayed binding (§4.4.1); and (4) the
callee-side instrumentation can be modified to verify multiple SIDs.
Note that for (4), the worst case would require unpacking the SID
register and individually verifying each stored SID, however, in
the best case, multiple SIDs can be validated at once. For example,
if SIDs are 1-byte, and a given target can only be reached by a
constant set of eight indirect branches, the target’s instrumentation
can perform a single, 64-bit comparison to validate the prior eight
branches instead of eight individual comparisons, one for each SID.

7.4.2 Adaptive CFI. FineIBT is agnostic to the policy it enforces
(§4.1.2), which means its effectiveness is only as good as the en-
forced policy. If FineIBT is made to enforce a coarse-grain pol-
icy, it may be susceptible to exploitation [37, 57, 73, 74], and sim-
ilarly, an imprecise fine-grain policy may also fall victim to at-
tacks [36, 66, 151]. To combat this, future work can build upon
FineIBT to create adaptive CFI schemes whereby effectiveness is
continually refined as a hardened program runs. IBT (or BTI) can
provide coarse-grain protection, anchoring indirect control flows
to targets in a single, large equivalence class, and the FineIBT IRM
code can be used to separate-out multiple equivalence classes which
are further pruned using information available at runtime. Ideally,
such a scheme would allow a program to start enforcing any policy
granularity and eventually converge on a policy that restricts every
indirect control flow transfer to a single target (e.g., UCT [82]).

7.4.3 Hardware Improvements. As discussed in Section 7.1, ARM
BTI encodes more information than Intel IBT. Specifically, the
bti instruction differentiates between different types of indirect
branches, offering a small effectiveness boost and improving the
granularity of the base mechanism over IBT. Future work may offer
similar capabilities to IBT, or, more significantly, implement the
FineIBT IRM code entirely in hardware. This would reduce the
already minimal overhead of FineIBT even further while main-
taining strong effectiveness guarantees as demonstrated by prior
work [42, 55, 96, 133, 158].

8 CONCLUSION
We studied the design, implementation, and evaluation of FineIBT:
a CFI enforcement mechanism for improving the precision of hard-
ware-based CFI solutions, like Intel IBT (and ARM BTI), by in-
strumenting program code with performant IRMs that reduce the
valid/allowed targets of indirect forward-edge transfers. We studied
the design of FineIBT on the x86-64 architecture, and implemented
and evaluated it on Linux and the LLVM toolchain. We optimized
FineIBT’s IRM code to be compact and incur low runtime and mem-
ory overheads, but at the same time be generic, so as to support a
range of different CFI policies. FineIBT incurs negligible runtime
slowdowns (≈0%–1.94% in SPEC CPU2017 and ≈0%–1.92% in real-
world applications) outperforming Clang-CFI. In addition, we in-
vestigated the effectiveness/security and compatibility of FineIBT
using the ConFIRM CFI benchmarking suite, demonstrating that
FineIBT’s IRMs provide complete coverage in the presence of mod-
ern software features, while supporting a wide range of CFI policies
(coarse- vs. fine- vs. finer-grain) with the same, predictable perfor-
mance behavior.

Availability
The prototype implementation of FineIBT is available at:
https://gitlab.com/brown-ssl/fineibt

ACKNOWLEDGMENTS
We thank our anonymous shepherd and reviewers for their valuable
feedback. This work was supported in part by the CIFellows 2020
program, through award CIF2020-BU-04, and the National Science
Foundation (NSF), through award CNS-2238467. Any opinions, find-
ings, and conclusions or recommendations expressed herein are
those of the authors and do not necessarily reflect the views of the
US government, NSF, CRA, or Intel.

REFERENCES
[1] 2021. Control-Flow Integrity Relevance Metrics. https://github.com/SoftwareL

anguagesSecurityLab/ConFIRM.
[2] 2021. Fine-grained Forward CFI on top of Intel CET/IBT. https://www.openwa

ll.com/lists/kernel-hardening/2021/02/11/1.
[3] 2021. sysbench. https://github.com/akopytov/sysbench.
[4] 2021. wrk – a HTTP benchmarking tool. https://github.com/wg/wrk.
[5] 2023. Functional differences from glibc. https://wiki.musl-libc.org/functional-

differences-from-glibc.html.
[6] 2023. MariaDB. https://mariadb.com.
[7] 2023. musl libc. https://musl.libc.org.
[8] 2023. nginx. https://nginx.org.
[9] 2023. Redis. https://redis.io.
[10] 2023. SQLite. https://www.sqlite.org.
[11] 2023. The Void (Linux) distribution. https://voidlinux.org.

RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong A. J. Gaidis, J. Moreira, K. Sun, A. Milburn, V. Atlidakis, and V. P. Kemerlis

[12] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. 2005. Control-Flow
Integrity. In ACM Conference on Computer and Communications Security (CCS).
340–353.

[13] Martín Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. 2009. Control-Flow
Integrity Principles, Implementations, and Applications. ACM Transactions on
Information and System Security (TISSEC) 13, 1 (2009), 1–40.

[14] Ali Abbasi, Thorsten Holz, Emmanuele Zambon, and Sandro Etalle. 2017. ECFI:
Asynchronous Control Flow Integrity for Programmable Logic Controllers. In
Annual Computer Security Applications Conference (ACSAC). 437–448.

[15] Tigist Abera, N Asokan, Lucas Davi, Jan-Erik Ekberg, Thomas Nyman, Andrew
Paverd, Ahmad-Reza Sadeghi, and Gene Tsudik. 2016. C-FLAT: Control-Flow
Attestation for Embedded Systems Software. In ACM Conference on Computer
and Communications Security (CCS). 743–754.

[16] Ioannis Agadakos, Nicholas Demarinis, Di Jin, Kent Williams-King, Jearson
Alfajardo, Benjamin Shteinfeld, David Williams-King, Vasileios P. Kemerlis, and
Georgios Portokalidis. 2020. Large-scale Debloating of Binary Shared Libraries.
Digital Threats: Research and Practice 1, 4 (2020), 1–28.

[17] Ioannis Agadakos, Di Jin, David Williams-King, Vasileios P. Kemerlis, and Geor-
gios Portokalidis. 2019. Nibbler: Debloating Binary Shared Libraries. In Annual
Computer Security Applications Conference (ACSAC). 70–83.

[18] Periklis Akritidis, Cristian Cadar, Costin Raiciu, Manuel Costa, and Miguel
Castro. 2008. Preventing Memory Error Exploits with WIT. In IEEE Symposium
on Security and Privacy (S&P). 263–277.

[19] Naif Saleh Almakhdhub, Abraham A Clements, Saurabh Bagchi, and Mathias
Payer. 2020. 𝜇RAI: Securing Embedded Systems with Return Address Integrity.
In Network and Distributed System Security Symposium (NDSS).

[20] Anil Altinay, Joseph Nash, Taddeus Kroes, Prabhu Rajasekaran, Dixin Zhou,
Adrian Dabrowski, David Gens, Yeoul Na, Stijn Volckaert, Cristiano Giuffrida,
Herbert Bos, and Michael Franz. 2020. BinRec: Dynamic Binary Lifting and
Recompilation. In European Conference on Computer Systems (EuroSys). 1–16.

[21] AMD64ABI. 2018. SystemVApplication Binary Interface –AMD64Architecture
Processor Supplement. https://raw.githubusercontent.com/wiki/hjl-tools/x86-
psABI/x86-64-psABI-draft.pdf.

[22] Android Open Source Project. 2022. Control Flow Integrity. https://source.and
roid.com/devices/tech/debug/cfi.

[23] Sandeep Bhatkar and R Sekar. 2008. Data Space Randomization. In International
Conference on Detection of Intrusions and Malware, and Vulnerability Assessment
(DIMVA). 1–22.

[24] Andrea Biondo, Mauro Conti, and Daniele Lain. 2018. Back To The Epilogue:
Evading Control Flow Guard via Unaligned Targets. In Network and Distributed
System Security Symposium (NDSS).

[25] Andrea Bittau, Adam Belay, Ali Mashtizadeh, David Mazières, and Dan Boneh.
2014. Hacking Blind. In IEEE Symposium on Security and Privacy (S&P). 227–242.

[26] Tyler Bletsch, Xuxian Jiang, and Vince Freeh. 2011. Mitigating Code-Reuse
Attacks with Control-Flow Locking. In Annual Computer Security Applications
Conference (ACSAC). 353–362.

[27] Tyler Bletsch, Xuxian Jiang, Vince W Freeh, and Zhenkai Liang. 2011. Jump-
Oriented Programming: A New Class of Code-Reuse Attack. In ACM Asia
Symposium on Information, Computer and Communications Security (ASIACCS).
30–40.

[28] Erik Bosman and Herbert Bos. 2014. Framing Signals—A Return to Portable
Shellcode. In IEEE Symposium on Security and Privacy (S&P). 243–258.

[29] Dimitar Bounov, Rami Gökhan Kici, and Sorin Lerner. 2016. Protecting C++
Dynamic Dispatch Through VTable Interleaving. In Network and Distributed
System Security Symposium (NDSS).

[30] Kjell Braden, Lucas Davi, Christopher Liebchen, Ahmad-Reza Sadeghi, Stephen
Crane, Michael Franz, and Per Larsen. 2016. Leakage-Resilient Layout Ran-
domization for Mobile Devices. In Network and Distributed System Security
Symposium (NDSS).

[31] James Bucek, Klaus-Dieter Lange, and Jóakim v. Kistowski. 2018. SPEC CPU2017:
Next-generation Compute Benchmark. In ACM/SPEC International Conference
on Performance Engineering (ICPE). 41–42.

[32] Bugtraq. 1997. Getting around non-executable stack (and fix). https://seclists.o
rg/bugtraq/1997/Aug/63.

[33] Nathan Burow, Scott A Carr, Joseph Nash, Per Larsen, Michael Franz, Stefan
Brunthaler, and Mathias Payer. 2017. Control-Flow Integrity: Precision, Security,
and Performance. ACM Computing Surveys (CSUR) 50, 1 (2017), 1–33.

[34] Nathan Burow, Derrick McKee, Scott A Carr, and Mathias Payer. 2018. CFIXX:
Object Type Integrity for C++ Virtual Dispatch. In Network and Distributed
System Security Symposium (NDSS).

[35] Nathan Burow, Xinping Zhang, and Mathias Payer. 2019. SoK: Shining Light on
Shadow Stacks. In IEEE Symposium on Security and Privacy (S&P). 985–999.

[36] Nicholas Carlini, Antonio Barresi, Mathias Payer, David Wagner, and Thomas R
Gross. 2015. Control-Flow Bending: On the Effectiveness of Control-Flow
Integrity. In USENIX Security Symposium (SEC). 161–176.

[37] Nicholas Carlini and David Wagner. 2014. ROP is Still Dangerous: Breaking
Modern Defenses. In USENIX Security Symposium (SEC). 385–399.

[38] Miguel Castro, Manuel Costa, and Tim Harris. 2006. Securing software by
enforcing data-flow integrity. In USENIX Symposium on Operating Systems
Design and Implementation (OSDI). 147–160.

[39] Stephen Checkoway, Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza Sadeghi,
Hovav Shacham, and Marcel Winandy. 2010. Return-Oriented Programming
without Returns. In ACM Conference on Computer and Communications Security
(CCS). 559–572.

[40] Ping Chen, Jun Xu, Zhiqiang Lin, Dongyan Xu, Bing Mao, and Peng Liu. 2015.
A Practical Approach for Adaptive Data Structure Layout Randomization. In
European Symposium on Research in Computer Security (ESORICS). 69–89.

[41] Yueqiang Cheng, Zongwei Zhou, Yu Miao, Xuhua Ding, and Robert H Deng.
2014. ROPecker: A Generic and Practical Approach for Defending against ROP
Attack. In Network and Distributed System Security Symposium (NDSS).

[42] Nick Christoulakis, George Christou, Elias Athanasopoulos, and Sotiris Ioanni-
dis. 2016. HCFI: Hardware-enforced Control-Flow Integrity. In ACM Conference
on Data and Application Security and Privacy (CODASPY). 38–49.

[43] Clang 17.0.0git documentation. 2023. Control Flow Integrity. https://clang.llvm
.org/docs/ControlFlowIntegrity.html.

[44] Robert P Colwell. 2021. The Origin of Intel’s Micro-Ops. IEEE Micro 41, 6 (2021),
37–41.

[45] F. J. Corbató and V. A. Vyssotsky. 1965. Introduction and Overview of the
Multics System. In American Federation of Information Processing Societies Fall
Joint Computer Conference (AFIPS FJCC). 185–196.

[46] Intel Corporation. 2019. Control-flow Enforcement Technology Specification.
[47] Intel Corporation. 2021. Intel 64 and IA-32 Architectures Optimization Reference

Manual.
[48] Intel Corporation. 2021. Intel 64 and IA-32 Architectures Software Developer’s

Manual.
[49] Intel Corporation. 2021. Linux Intel Quilt. https://github.com/intel/linux-intel-

quilt/tree/mainline-tracking-v5.13-yocto-210727T062416Z.
[50] Crispan Cowan, Calton Pu, Dave Maier, Jonathan Walpole, Peat Bakke, Steve

Beattie, Aaron Grier, Perry Wagle, Qian Zhang, and Heather Hinton. 1998.
StackGuard: Automatic Adaptive Detection and Prevention of Buffer-Overflow
Attacks. In USENIX Security Symposium (SEC), Vol. 98. 63–78.

[51] Stephen Crane, Christopher Liebchen, Andrei Homescu, Lucas Davi, Per Larsen,
Ahmad-Reza Sadeghi, Stefan Brunthaler, and Michael Franz. 2015. Readac-
tor: Practical Code Randomization Resilient to Memory Disclosure. In IEEE
Symposium on Security and Privacy (S&P). 763–780.

[52] John Criswell, Nathan Dautenhahn, and Vikram Adve. 2014. KCoFI: Com-
plete Control-Flow Integrity for Commodity Operating System Kernels. In IEEE
Symposium on Security and Privacy (S&P). 292–307.

[53] Thurston HY Dang, Petros Maniatis, and David Wagner. 2015. The Perfor-
mance Cost of Shadow Stacks and Stack Canaries. In ACM Asia Symposium on
Information, Computer and Communications Security (ASIACCS). 555–566.

[54] Lucas Davi, Alexandra Dmitrienko, Manuel Egele, Thomas Fischer, Thorsten
Holz, Ralf Hund, Stefan Nürnberger, and Ahmad-Reza Sadeghi. 2012. MoCFI: A
Framework to Mitigate Control-Flow Attacks on Smartphones. In Network and
Distributed System Security Symposium (NDSS).

[55] Lucas Davi, Matthias Hanreich, Debayan Paul, Ahmad-Reza Sadeghi, Patrick
Koeberl, Dean Sullivan, Orlando Arias, and Yier Jin. 2015. HAFIX: Hardware-
Assisted Flow Integrity Extension. In Design Automation Conference (DAC).

[56] Lucas Davi, Patrick Koeberl, and Ahmad-Reza Sadeghi. 2014. Hardware-Assisted
Fine-Grained Control-Flow Integrity: Towards Efficient Protection of Embedded
Systems Against Software Exploitation. InDesign Automation Conference (DAC).

[57] Lucas Davi, Ahmad-Reza Sadeghi, Daniel Lehmann, and Fabian Monrose. 2014.
Stitching the Gadgets: On the Ineffectiveness of Coarse-Grained Control-Flow
Integrity Protection. In USENIX Security Symposium (SEC). 401–416.

[58] Sushant Dinesh, Nathan Burow, Dongyan Xu, and Mathias Payer. 2020.
RetroWrite: Statically Instrumenting COTS Binaries for Fuzzing and Saniti-
zation. In IEEE Symposium on Security and Privacy (S&P). 1497–1511.

[59] Ren Ding, Chenxiong Qian, Chengyu Song, Bill Harris, Taesoo Kim, and Wenke
Lee. 2017. Efficient Protection of Path-Sensitive Control Security. In USENIX
Security Symposium (SEC). 131–148.

[60] Victor Duta, Cristiano Giuffrida, Herbert Bos, and Erik Van Der Kouwe. 2021.
PIBE: Practical Kernel Control-Flow Hardening with Profile-Guided Indirect
Branch Elimination. In ACM International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS). 743–757.

[61] Mohamed Elsabagh, Dan Fleck, and Angelos Stavrou. 2017. Strict Virtual Call
Integrity Checking for C++ Binaries. In ACM Asia Symposium on Information,
Computer and Communications Security (ASIACCS). 140–154.

[62] Steffen Enders, Mariia Rybalka, and Elmar Padilla. 2021. PIdARCI: Using As-
sembly Instruction Patterns to Identify, Annotate, and Revert Compiler Idioms.
In International Conference on Privacy, Security and Trust (PST). 1–7.

[63] Ulfar Erlingsson, Martín Abadi, Michael Vrable, Mihai Budiu, and George C
Necula. 2006. XFI: Software Guards for System Address Spaces. In USENIX
Symposium on Operating Systems Design and Implementation (OSDI). 75–88.

[64] Ulfar Erlingsson and Fred B Schneider. 2000. IRM Enforcement of Java Stack
Inspection. In IEEE Symposium on Security and Privacy (S&P). 246–255.

FineIBT RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong

[65] Erlingsson, Úlfar and Schneider, Fred B. 1999. SASI Enforcement of Security
Policies: A Retrospective. In New Security Paradigms Workshop (NSPW). 87–95.

[66] Isaac Evans, Fan Long, Ulziibayar Otgonbaatar, Howard Shrobe, Martin Rinard,
Hamed Okhravi, and Stelios Sidiroglou-Douskos. 2015. Control Jujutsu: On
the Weaknesses of Fine-Grained Control Flow Integrity. In ACM Conference on
Computer and Communications Security (CCS). 901–913.

[67] Eyal Itkin. 2017. Bypassing Return Flow Guard (RFG). https://eyalitkin.wordpr
ess.com/2017/08/18/bypassing-return-flow-guard-rfg/.

[68] Stephanie Forrest, Anil Somayaji, and David H. Ackley. 1997. Building Diverse
Computer Systems. In Workshop on Hot Topics in Operating Systems (HotOS).
67–72.

[69] Robert Gawlik and Thorsten Holz. 2014. Towards Automated Integrity Protec-
tion of C++ Virtual Function Tables in Binary Programs. In Annual Computer
Security Applications Conference (ACSAC). 396–405.

[70] Robert Gawlik, Benjamin Kollenda, Philipp Koppe, Behrad Garmany, and
Thorsten Holz. 2016. Enabling Client-Side Crash-Resistance to Overcome Diver-
sification and Information Hiding. In Network and Distributed System Security
Symposium (NDSS).

[71] Xinyang Ge, Weidong Cui, and Trent Jaeger. 2017. GRIFFIN: Guarding Control
Flows using Intel Processor Trace. ACM SIGPLAN Notices 52, 4 (2017), 585–598.

[72] Xinyang Ge, Nirupama Talele, Mathias Payer, and Trent Jaeger. 2016. Fine-
Grained Control-Flow Integrity for Kernel Software. In IEEE European Sympo-
sium on Security and Privacy (EuroS&P). 179–194.

[73] Enes Göktas, Elias Athanasopoulos, Herbert Bos, and Georgios Portokalidis.
2014. Out Of Control: Overcoming Control-Flow Integrity. In IEEE Symposium
on Security and Privacy (S&P). 575–589.

[74] Enes Göktaş, Elias Athanasopoulos, Michalis Polychronakis, Herbert Bos, and
Georgios Portokalidis. 2014. Size Does Matter: Why Using Gadget-Chain Length
to Prevent Code-Reuse Attacks is Hard. In USENIX Security Symposium (SEC).
417–432.

[75] Enes Göktas, Benjamin Kollenda, Philipp Koppe, Erik Bosman, Georgios Por-
tokalidis, Thorsten Holz, Herbert Bos, and Cristiano Giuffrida. 2018. Position-
independent Code Reuse: On the Effectiveness of ASLR in the Absence of
Information Disclosure. In IEEE European Symposium on Security and Privacy
(EuroS&P). 227–242.

[76] Enes Göktas, Kaveh Razavi, Georgios Portokalidis, Herbert Bos, and Cristiano
Giuffrida. 2020. Speculative Probing: Hacking Blind in the Spectre Era. In ACM
Conference on Computer and Communications Security (CCS). 1871–1885.

[77] Google Security Blog. 2021. Mitigating Memory Safety Issues in Open Source
Software. https://security.googleblog.com/2021/02/mitigating-memory-safety-
issues-in-open.html.

[78] Jens Grossklags and Claudia Eckert. 2018. 𝜏CFI: Type-Assisted Control Flow
Integrity for x86-64 Binaries. In International Symposium on Research in Attacks,
Intrusions and Defenses (RAID).

[79] Daniel Gruss. 2018. Software-based Microarchitectural Attacks. (2018).
[80] Yufei Gu, Qingchuan Zhao, Yinqian Zhang, and Zhiqiang Lin. 2017. PT-CFI:

Transparent Backward-Edge Control Flow Violation Detection using Intel Pro-
cessor Trace. In ACM Conference on Data and Application Security and Privacy
(CODASPY). 173–184.

[81] Istvan Haller, Enes Göktaş, Elias Athanasopoulos, Georgios Portokalidis, and
Herbert Bos. 2015. ShrinkWrap: VTable Protection without Loose Ends. In
Annual Computer Security Applications Conference (ACSAC). 341–350.

[82] Hong Hu, Chenxiong Qian, Carter Yagemann, Simon Pak Ho Chung, William R
Harris, Taesoo Kim, and Wenke Lee. 2018. Enforcing Unique Code Target
Property for Control-Flow Integrity. In ACM Conference on Computer and Com-
munications Security (CCS). 1470–1486.

[83] Dongseok Jang, Zachary Tatlock, and Sorin Lerner. 2014. SafeDispatch: Securing
C++ Virtual Calls from Memory Corruption Attacks. In Network and Distributed
System Security Symposium (NDSS).

[84] Gaurav S Kc, Angelos D Keromytis, and Vassilis Prevelakis. 2003. Countering
Code-Injection AttacksWith Instruction-Set Randomization. In ACM Conference
on Computer and Communications Security (CCS). 272–280.

[85] Vasileios P Kemerlis, Georgios Portokalidis, and Angelos D Keromytis. 2012.
kGuard: Lightweight Kernel Protection against Return-to-User Attacks. In
USENIX Security Symposium (SEC). 459–474.

[86] Mustakimur Khandaker, Abu Naser, Wenqing Liu, Zhi Wang, Yajin Zhou, and
Yueqiang Cheng. 2019. Adaptive Call-Site Sensitive Control Flow Integrity. In
IEEE European Symposium on Security and Privacy (EuroS&P). 95–110.

[87] Mustakimur Rahman Khandaker, Wenqing Liu, Abu Naser, Zhi Wang, and
Jie Yang. 2019. Origin-sensitive Control Flow Integrity. In USENIX Security
Symposium (SEC). 195–211.

[88] Vladimir Kiriansky, Derek Bruening, and Saman Amarasinghe. 2002. Secure
Execution via Program Shepherding. In USENIX Security Symposium (SEC).

[89] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner
Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. 2019. Spectre Attacks: Exploiting Speculative Exe-
cution. In IEEE Symposium on Security and Privacy (S&P). 1–19.

[90] Koen Koning, Xi Chen, Herbert Bos, Cristiano Giuffrida, and Elias Athanasopou-
los. 2017. No Need to Hide: Protecting Safe Regions on Commodity Hardware.
In European Conference on Computer Systems (EuroSys). 437–452.

[91] Hyungjoon Koo, Yaohui Chen, Long Lu, Vasileios P Kemerlis, and Michalis Poly-
chronakis. 2018. Compiler-assisted Code Randomization. In IEEE Symposium
on Security and Privacy (S&P). 461–477.

[92] Esmaeil Mohammadian Koruyeh, Khaled N Khasawneh, Chengyu Song, and
Nael Abu-Ghazaleh. 2018. Spectre Returns! Speculation Attacks using the
Return Stack Buffer. In USENIX Workshop on Offensive Technologies (WOOT).

[93] Volodymyr Kuznetsov, Laszlo Szekeres, Mathias Payer, George Candea nd
R. Sekar, and Dawn Song. 2014. Code-Pointer Integrity. In USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI). 147–163.

[94] Donghyun Kwon, Jiwon Seo, Sehyun Baek, Giyeol Kim, Sunwoo Ahn, and
Yunheung Paek. 2018. VM-CFI: Control-Flow Integrity for Virtual Machine
Kernel Using Intel PT. In International Conference on Computational Science and
Its Applications (ICCSA). 127–137.

[95] Per Larsen, Andrei Homescu, Stefan Brunthaler, and Michael Franz. 2014. SoK:
Automated Software Diversity. In IEEE Symposium on Security and Privacy (S&P).
276–291.

[96] Jinfeng Li, Liwei Chen, Gang Shi, Kai Chen, and Dan Meng. 2020. ABCFI:
Fast and Lightweight Fine-Grained Hardware-Assisted Control-Flow Integrity.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
(TCAD) 39, 11 (2020), 3165–3176.

[97] Jinku Li, Xiaomeng Tong, Fengwei Zhang, and Jianfeng Ma. 2018. Fine-CFI: Fine-
Grained Control-Flow Integrity for Operating System Kernels. IEEE Transactions
on Information Forensics and Security (TIFS) 13, 6 (2018), 1535–1550.

[98] ARM Limited. 2020. ARM A64 Instruction Set Architecture – Branch Target
Identification.

[99] Linux Foundation. 2015. Linux Standard Base Core Specification for x86-64.
https://refspecs.linuxfoundation.org/LSB_5.0.0/LSB-Core-AMD64/LSB-Core-
AMD64.pdf.

[100] LLVM Project. 2023. Writing an LLVM Pass. https://llvm.org/docs/WritingAnL
LVMPass.html.

[101] Hong Jiu Lu. 2018. Control-Flow Enforcement Technology. In Linux Plumbers
Conference (LPC).

[102] Kangjie Lu and Hong Hu. 2019. Where Does It Go? Refining Indirect-Call
Targets with Multi-Layer Type Analysis. In ACM Conference on Computer and
Communications Security (CCS). 1867–1881.

[103] LWN.net. 2004. x86 NX support. https://lwn.net/Articles/87814/.
[104] LWN.net. 2020. Control-flow integrity for the kernel. https://lwn.net/Articles/8

10077/.
[105] LWN.net. 2021. Control-flow Enforcement: Shadow Stack. https://lwn.net/Arti

cles/846525/.
[106] LWN.net. 2022. Shadow stacks for userspace. https://lwn.net/Articles/883340/.
[107] LWN.net. 2023. Kernel release status. https://lwn.net/Articles/924113/.
[108] Giorgi Maisuradze and Christian Rossow. 2018. ret2spec: Speculative Execution

using Return Stack Buffers. InACMConference on Computer and Communications
Security (CCS). 2109–2122.

[109] AndreaMambretti, Alexandra Sandulescu, Alessandro Sorniotti, William Robert-
son, Engin Kirda, and Anil Kurmus. 2021. Bypassing memory safety mechanisms
through speculative control flow hijacks. In IEEE European Symposium on Secu-
rity and Privacy (EuroS&P). 633–649.

[110] MariaDB. 2011. MariaDB Tools. https://github.com/MariaDB/mariadb.org-
tools/blob/master/sysbench/run-sysbench.sh.

[111] Ali Jose Mashtizadeh, Andrea Bittau, Dan Boneh, and David Mazières. 2015.
CCFI: Cryptographically Enforced Control Flow Integrity. In ACM Conference
on Computer and Communications Security (CCS). 941–951.

[112] MaskRay. 2021. When can glibc be built with Clang? https://maskray.me/blog/
2021-10-10-when-can-glibc-be-built-with-clang.

[113] Stephen McCamant and Greg Morrisett. 2006. Evaluating SFI for a CISC Archi-
tecture. In USENIX Security Symposium (SEC). 209–224.

[114] Microsoft Docs. 2022. Data Execution Prevention. https://docs.microsoft.com/e
n-us/.

[115] Microsoft Security Response Center. 2019. A proactive approach to more secure
code. https://msrc.microsoft.com/blog/2019/07/a-proactive-approach-to-more-
secure-code/.

[116] Microsoft technical documentation. 2022. Control Flow Guard for platform
security. https://docs.microsoft.com/en-us/windows/win32/secbp/control-
flow-guard.

[117] Alyssa Milburn, Ke Sun, and Henrique Kawakami. 2022. You Cannot Always
Win the Race: Analyzing the LFENCE/JMPMitigation for Branch Target Injection.
arXiv preprint arXiv:2203.04277 (2022).

[118] Vishwath Mohan, Per Larsen, Stefan Brunthaler, Kevin W Hamlen, and Michael
Franz. 2015. Opaque Control-Flow Integrity. In Network and Distributed System
Security Symposium (NDSS).

[119] Joao Moreira. 2021. [X86] Enable ibt-seal optimization when LTO is used in
Kernel. https://reviews.llvm.org/D116070.

RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong A. J. Gaidis, J. Moreira, K. Sun, A. Milburn, V. Atlidakis, and V. P. Kemerlis

[120] João Moreira, Sandro Rigo, Michalis Polychronakis, and Vasileios P Kemerlis.
2017. DROP THE ROP: Fine-grained Control-flow Integrity for the Linux Kernel.
Black Hat Asia (BHASIA) (2017).

[121] Joao Moreira, Mark Rutland, Peter Zijlstra, and Sami Tolvanen. 2022. Linux
Kernel Control-Flow Integrity Support. In Linux Plumbers Conference (LPC).

[122] Santosh Nagarakatte, Jianzhou Zhao, Milo MK Martin, and Steve Zdancewic.
2009. SoftBound: Highly Compatible and Complete Spatial Memory Safety for
C. In ACM Conference on Programming Language Design and Implementation
(PLDI). 245–258.

[123] Santosh Nagarakatte, Jianzhou Zhao, Milo MK Martin, and Steve Zdancewic.
2010. CETS: Compiler Enforced Temporal Safety for C. In International Sympo-
sium on Memory Management (ISMM). 31–40.

[124] Ben Niu and Gang Tan. 2013. Monitor Integrity Protection with Space Efficiency
and Separate Compilation. InACMConference on Computer and Communications
Security (CCS). 199–210.

[125] Ben Niu and Gang Tan. 2014. Modular Control-Flow Integrity. In ACM Confer-
ence on Programming Language Design and Implementation (PLDI). 577–587.

[126] Ben Niu and Gang Tan. 2014. RockJIT: Securing Just-In-Time Compilation
Using Modular Control-Flow Integrity. In ACM Conference on Computer and
Communications Security (CCS). 1317–1328.

[127] Ben Niu and Gang Tan. 2015. Per-Input Control-Flow Integrity. In ACM Confer-
ence on Computer and Communications Security (CCS). 914–926.

[128] Thomas Nyman, Jan-Erik Ekberg, Lucas Davi, and N Asokan. 2017. CFI CaRE:
Hardware-supported Call and Return Enforcement for Commercial Microcon-
trollers. In International Symposium on Research in Attacks, Intrusions and De-
fenses (RAID). 259–284.

[129] Aleph One. 1996. Smashing The Stack For Fun And Profit. Phrack Magazine 7,
49 (1996).

[130] OpenBSD. 2003. i386 W^X. https://marc.info/?l=openbsd-misc&m=105056000
801065.

[131] Oracle Solaris – Linkers and Libraries Guide. 2012. Procedure Linkage Table.
https://docs.oracle.com/cd/E26502_01/html/E26507/chapter6-1235.html.

[132] Vasilis Pappas, Michalis Polychronakis, and Angelos D Keromytis. 2013. Trans-
parent ROP Exploit Mitigation using Indirect Branch Tracing. InUSENIX Security
Symposium (SEC). 447–462.

[133] Seonghwan Park, Dongwook Kang, Jeonghwan Kang, and Donghyun Kwon.
2022. Bratter: An Instruction Set Extension for Forward Control-Flow Integrity
in RISC-V. Sensors 22, 4 (2022), 1392.

[134] Andre Pawlowski, Moritz Contag, Victor van der Veen, Chris Ouwehand,
Thorsten Holz, Herbert Bos, Elias Athanasopoulos, and Cristiano Giuffrida.
2017. MARX: Uncovering Class Hierarchies in C++ Programs. In Network and
Distributed System Security Symposium (NDSS).

[135] Andre Pawlowski, Victor van der Veen, Dennis Andriesse, Erik van der Kouwe,
ThorstenHolz, Cristiano Giuffrida, andHerbert Bos. 2019. VPS: ExcavatingHigh-
Level C++ Constructs from Low-Level Binaries to protect Dynamic Dispatching.
In Annual Computer Security Applications Conference (ACSAC). 97–112.

[136] PaX Team. 2003. What the future holds for PaX. https://pax.grsecurity.net/doc
s/pax-future.txt.

[137] Mathias Payer, Antonio Barresi, and Thomas R Gross. 2015. Fine-Grained
Control-Flow Integrity Through Binary Hardening. In International Conference
on Detection of Intrusions and Malware, and Vulnerability Assessment (DIMVA).
144–164.

[138] Jannik Pewny and Thorsten Holz. 2013. Control-flow Restrictor: Compiler-based
CFI for iOS. In Annual Computer Security Applications Conference (ACSAC). 309–
318.

[139] Marios Pomonis, Theofilos Petsios, Angelos D. Keromytis, Michalis Polychron-
akis, and Vasileios P. Kemerlis. 2017. kRˆX: Comprehensive Kernel Protection
against Just-In-Time Code Reuse. In European Conference on Computer Systems
(EuroSys). 420–436.

[140] Aravind Prakash, Xunchao Hu, and Heng Yin. 2015. vfGuard: Strict Protection
for Virtual Function Calls in COTS C++ Binaries. In Network and Distributed
System Security Symposium (NDSS).

[141] Android Open Source Project. 2022. Control Flow Integrity. https://source.and
roid.com/docs/security/test/cfi.

[142] The Chromium Projects. 2023. Control Flow Integrity. https://www.chromium
.org/developers/testing/control-flow-integrity/.

[143] Sergej Proskurin, Marius Momeu, Seyedhamed Ghavamnia, Vasileios P Kemerlis,
and Michalis Polychronakis. 2020. xMP: Selective Memory Protection for Kernel
and User Space. In IEEE Symposium on Security and Privacy (S&P). 563–577.

[144] Anh Quach, Aravind Prakash, and Lok Yan. 2018. Debloating Software through
Piece-Wise Compilation and Loading. In USENIX Security Symposium (SEC).
869–886.

[145] Prabhu Rajasekaran, Stephen Crane, David Gens, Yeoul Na, Stijn Volckaert, and
Michael Franz. 2020. CoDaRR: Continuous Data Space Randomization against
Data-Only Attacks. In ACM Asia Conference on Computer and Communications
Security (ASIACCS). 494–505.

[146] Ganesan Ramalingam. 1994. The Undecidability of Aliasing. ACM Transactions
on Programming Languages and Systems (TOPLAS) 16, 5 (1994), 1467–1471.

[147] Red Hat Blog – Huzaifa Sidhpurwala. 2019. Security Technologies: RELRO.
https://www.redhat.com/en/blog/hardening-elf-binaries-using-relocation-
read-only-relro.

[148] Redis. 2023. memtier_benchmark. https://github.com/RedisLabs/memtier{_}ben
chmark.

[149] Robert Rudd, Richard Skowyra, David Bigelow, Veer Dedhia, Thomas Hobson,
Stephen Crane, Christopher Liebchen, Per Larsen, Lucas Davi, Michael Franz,
Ahmad-Reza Sadeghi, and Hamed Okhravi. 2017. Address Oblivious Code Reuse:
On the Effectiveness of Leakage Resilient Diversity. In Network and Distributed
System Security Symposium (NDSS).

[150] SANS Institute. 2023. CWE/SANS TOP 25 Most Dangerous Software Errors.
https://www.sans.org/top25-software-errors/.

[151] Felix Schuster, Thomas Tendyck, Christopher Liebchen, Lucas Davi, Ahmad-
Reza Sadeghi, and Thorsten Holz. 2015. Counterfeit Object-oriented Program-
ming: On the Difficulty of Preventing Code Reuse Attacks in C++ Applications.
In IEEE Symposium on Security and Privacy (S&P). 745–762.

[152] David Sehr, Robert Muth, Cliff Biffle, Victor Khimenko, Egor Pasko, Karl Schimpf,
Bennet Yee, and Brad Chen. 2010. Adapting Software Fault Isolation to Contem-
porary CPU Architectures. In USENIX Security Symposium (SEC). 1–11.

[153] Hovav Shacham. 2007. The Geometry of Innocent Flesh on the Bone: Return-
into-libc Without Function Calls (on the x86). In ACM Conference on Computer
and Communications Security (CCS). 552–561.

[154] Vedvyas Shanbhogue, Deepak Gupta, and Ravi Sahita. 2019. Security Analysis
of Processor Instruction Set Architecture for Enforcing Control-Flow Integrity.
In International Workshop on Hardware and Architectural Support for Security
and Privacy (HASP).

[155] Kanad Sinha, Vasileios P Kemerlis, and Simha Sethumadhavan. 2017. Reviving
Instruction Set Randomization. In IEEE International Symposium on Hardware
Oriented Security and Trust (HOST). 21–28.

[156] Kevin Z Snow, Fabian Monrose, Lucas Davi, Alexandra Dmitrienko, Christopher
Liebchen, and Ahmad-Reza Sadeghi. 2013. Just-In-Time Code Reuse: On the
Effectiveness of Fine-Grained Address Space Layout Randomization. In IEEE
Symposium on Security and Privacy (S&P). 574–588.

[157] SQLite. 2023. Database Speed Comparison. https://www.sqlite.com/speed.html.
[158] Dean Sullivan, Orlando Arias, Lucas Davi, Per Larsen, Ahmad-Reza Sadeghi, and

Yier Jin. 2016. Strategy Without Tactics: Policy-Agnostic Hardware-enhanced
Control-Flow Integrity. In Design Automation Conference (DAC).

[159] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. 2013. Sok: Eternal
War in Memory. In IEEE Symposium on Security and Privacy (S&P). 48–62.

[160] Microsoft Defender Security Research Team. 2017. Analysis of the Shadow
Brokers release and mitigation with Windows 10 virtualization-based security.
https://www.microsoft.com/en-us/security/blog/2017/06/16/analysis-of-the-
shadow-brokers-release-and-mitigation-with-windows-10-virtualization-
based-security/?source=mmpc.

[161] PaX Team. 2015. RAP: RIP ROP. In Hackers 2 Hackers Conference (H2HC).
[162] Ubuntu Security Team. 2022. Security Features in Ubuntu. https://wiki.ubuntu.

com/Security/Features.
[163] The Chromium Projects. 2023. Memory safety. https://www.chromium.org/H

ome/chromium-security/memory-safety/.
[164] The Systems Security Group at University of Minnesota. 2023. TypeDive:

Multi-Layer Type Analysis (MLTA) for Refining Indirect-Call Targets. https:
//github.com/umnsec/mlta.

[165] Caroline Tice, Tom Roeder, Peter Collingbourne, Stephen Checkoway, Úlfar
Erlingsson, Luis Lozano, and Geoff Pike. 2014. Enforcing Forward-Edge Control-
Flow Integrity in GCC & LLVM. In USENIX Security Symposium (SEC). 941–955.

[166] Victor Van der Veen, Dennis Andriesse, Enes Göktaş, Ben Gras, Lionel Sambuc,
Asia Slowinska, Herbert Bos, and Cristiano Giuffrida. 2015. Practical Context-
Sensitive CFI. In ACM Conference on Computer and Communications Security
(CCS). 927–940.

[167] Victor van der Veen, Dennis Andriesse, Manolis Stamatogiannakis, Xi Chen,
Herbert Bos, and Cristiano Giuffrdia. 2017. The Dynamics of Innocent Flesh
on the Bone: Code Reuse Ten Years Later. In ACM Conference on Computer and
Communications Security (CCS). 1675–1689.

[168] Victor Van Der Veen, Enes Göktas, Moritz Contag, Andre Pawoloski, Xi Chen,
Sanjay Rawat, Herbert Bos, Thorsten Holz, Elias Athanasopoulos, and Cristiano
Giuffrida. 2016. A Tough call: Mitigating Advanced Code-Reuse Attacks at the
Binary Level. In IEEE Symposium on Security and Privacy (S&P). 934–953.

[169] Victor van der Veen, Lorenzo Cavallaro, Herbert Bos, et al. 2012. Memory Errors:
The Past, the Present, and the Future. In International Symposium on Research
in Attacks, Intrusions and Defenses (RAID). 86–106.

[170] Virus Bulletin. 2012. Code injection via return-oriented programming. https:
//www.virusbulletin.com/virusbulletin/2012/10/code- injection-return-
oriented-programming.

[171] Robert J Walls, Nicholas F Brown, Thomas Le Baron, Craig A Shue, Hamed
Okhravi, and Bryan C Ward. 2019. Control-Flow Integrity for Real-Time Em-
bedded Systems. In Euromicro Conference on Real-Time Systems (ECRTS).

FineIBT RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong

[172] Minghua Wang, Heng Yin, Abhishek Vasisht Bhaskar, Purui Su, and Dengguo
Feng. 2015. Binary Code Continent: Finer-Grained Control Flow Integrity for
Stripped Binaries. In Annual Computer Security Applications Conference (ACSAC).
331–340.

[173] Wenhao Wang, Xiaoyang Xu, and Kevin W Hamlen. 2017. Object Flow Integrity.
InACMConference on Computer and Communications Security (CCS). 1909–1924.

[174] Zhi Wang and Xuxian Jiang. 2010. HyperSafe: A Lightweight Approach to
Provide Lifetime Hypervisor Control-Flow Integrity. In IEEE Symposium on
Security and Privacy (S&P). 380–395.

[175] Mario Werner, Thomas Unterluggauer, David Schaffenrath, and Stefan Mangard.
2018. Sponge-Based Control-Flow Protection for IoT Devices. In IEEE European
Symposium on Security and Privacy (EuroS&P). 214–226.

[176] Wikipedia. 2023. NX bit. https://en.wikipedia.org/wiki/NX_bit.
[177] David Williams-King, Graham Gobieski, Kent Williams-King, James P Blake,

Xinhao Yuan, Patrick Colp, Michelle Zheng, Vasileios P Kemerlis, Junfeng Yang,
and William Aiello. 2016. Shuffler: Fast and Deployable Continuous Code
Re-Randomization. In USENIX Symposium on Operating Systems Design and
Implementation (OSDI). 367–382.

[178] David Williams-King, Hidenori Kobayashi, Kent Williams-King, Graham Patter-
son, Frank Spano, Yu Jian Wu, Junfeng Yang, and Vasileios P. Kemerlis. 2020.
Egalito: Layout-Agnostic Binary Recompilation. In ACM International Confer-
ence on Architectural Support for Programming Languages and Operating Systems
(ASPLOS). 133–147.

[179] Jun Xu, Dongliang Mu, Ping Chen, Xinyu Xing, Pei Wang, and Peng Liu. 2016.
Credal: Towards Locating a Memory Corruption Vulnerability with Your Core
Dump. In ACM SIGSAC Conference on Computer and Communications Security
(CCS). 529–540.

[180] Xiaoyang Xu, Masoud Ghaffarinia, Wenhao Wang, Kevin W Hamlen, and
Zhiqiang Lin. 2019. CONFIRM: Evaluating Compatibility and Relevance of
Control-Flow Integrity Protections for Modern Software. In USENIX Security
Symposium (SEC). 1805–1821.

[181] Yuval Yarom and Katrina Falkner. 2014. FLUSH+RELOAD: A High Resolution,
Low Noise, L3 Cache Side-Channel Attack. In USENIX Security Symposium (SEC).
719–732.

[182] Bennet Yee, David Sehr, Gregory Dardyk, J Bradley Chen, Robert Muth, Tavis
Ormandy, Shiki Okasaka, Neha Narula, and Nicholas Fullagar. 2009. Native
Client: A Sandbox for Portable, Untrusted x86 Native Code. In IEEE Symposium
on Security and Privacy (S&P). 79–93.

[183] Pinghai Yuan, Qingkai Zeng, and Xuhua Ding. 2015. Hardware-Assisted Fine-
Grained Code-Reuse Attack Detection. In International Symposium on Research
in Attacks, Intrusions and Defenses (RAID). 66–85.

[184] Chao Zhang, Chengyu Song, Kevin Zhijie Chen, Zhaofeng Chen, and Dawn
Song. 2015. VTint: Protecting Virtual Function Tables’ Integrity. In Network
and Distributed System Security Symposium (NDSS).

[185] Chao Zhang, Dawn Song, Scott A Carr, Mathias Payer, Tongxin Li, Yu Ding,
and Chengyu Song. 2016. VTrust: Regaining Trust on Virtual Calls. In Network
and Distributed System Security Symposium (NDSS).

[186] Chao Zhang, Tao Wei, Zhaofeng Chen, Lei Duan, Laszlo Szekeres, Stephen
McCamant, Dawn Song, and Wei Zou. 2013. Practical Control Flow Integrity
and Randomization for Binary Executables. In IEEE Symposium on Security and
Privacy (S&P). 559–573.

[187] Jun Zhang, Rui Hou, Junfeng Fan, Ke Liu, Lixin Zhang, and Sally A McKee. 2017.
RAGuard: A Hardware Based Mechanism for Backward-Edge Control-Flow
Integrity. In ACM International Conference on Computing Frontiers (CF). 27–34.

[188] Jiliang Zhang, Binhang Qi, Zheng Qin, and Gang Qu. 2018. HCIC: Hardware-
Assisted Control-Flow Integrity Checking. IEEE Internet of Things Journal 6, 1
(2018), 458–471.

[189] Mingwei Zhang and R Sekar. 2013. Control Flow Integrity for COTS Binaries.
In USENIX Security Symposium (SEC). 337–352.

A APPENDIX
A.1 Clang-CFI Instrumentation

Listing 5 illustrates how Clang-CFI confines forward-edge trans-
fers (backward-edges are not covered) in x86-64. Functions 0x4011d0
and 0x4011f0 (originally f0 and f1) are address-taken, while func
(0x401140) contains an indirect control-flow transfer (ln. 9).

Clang-CFI first identifies all address-taken functions, and places
them into equivalence classes (i.e., sets) based on their type signatures—
i.e., two (address-taken) functions belong to the same set, iff their
type signatures match exactly [43]. In the example above, 0x4011d0
and 0x4011f0 belong to the same set. Next, the original symbols
of address-taken functions are mangled, by appending the .cfi

1 0x401140 <func>:
2 ...
3 40116a: mov $0x401250,%ecx

4 40116f: mov %rax,%rdx

5 401172: sub %rcx,%rdx

6 401175: rol $0x3d,%rdx

7 401179: cmp $0x2,%rdx

8 40117d: jae 4011c5
9 40117f: callq *%rax
10 ...
11 4011a3: callq 4011d0 <f0.cfi>
12 ...
13 4011c5: ud2
14 ...
15

16 0x4011d0 <f0.cfi>:
17 ...
18

19 0x4011f0 <f1.cfi>:
20 ...
21

22 0x401250 <f0>:
23 401250: jmpq 4011d0 <f0.cfi>

24 401255: int3

25 401256: int3

26 401257: int3
27 0x401258 <f1>:
28 401258: jmpq 4011f0 <f1.cfi>

29 40125d: int3

30 40125e: int3

31 40125f: int3
32 ...

Listing 5: Clang-CFI IRM example (x86-64).

suffix to them (e.g., f0 { f0.cfi). In addition, each set is accom-
panied by a trampoline-like construct, which contains an entry for
every function in the set. In above example, the trampoline that
covers 0x4011d0 and 0x4011f0 spans ln. 23–ln. 31, and contains
two entries. Each such entry (ln. 23–ln. 26 and ln. 28–ln. 31) is
8-byte aligned, and consists of a direct branch to its correspond-
ing address-taken function (ln. 16, ln. 19). In x86, this branch is
implemented via a direct jmp instruction, which may span up to 5
bytes (including the operand/branch target); the remaining bytes
of each “slot” are filled with (single-byte) int3 instructions to trap
accesses to them (ln. 24–ln. 26, ln. 29–ln. 31). Lastly, Clang-CFI
associates each trampoline slot with the symbol name of the orig-
inal, address-taken function that corresponds to. In other words,
0x4011d0 (originally function f0) is renamed to f0.cfi, and an
entry for it is created at 0x401250 (trampoline), which is now asso-
ciated with symbol f0. (The process is identical for function f1.)
The net effect of the above is that whenever the address of f0 or
f1 is taken, 0x401250 or 0x401258 will now be returned, instead
of 0x4011d0 and 0x4011f0, effectively “forcing” control paths that
indirectly reach f0/f1 to do so via the trampoline code.

RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong A. J. Gaidis, J. Moreira, K. Sun, A. Milburn, V. Atlidakis, and V. P. Kemerlis

1 PLT0: pushq GOT+8(%rip) /* GOT[1] */
2 jmp *GOT+16(%rip) /* GOT[2] */
3 nopl 0x0(%rax) /* PAD */
4 ...
5 PLT3: jmp *fsym3@GOT(%rip) /* GOT[5] */
6 pushq $0x2
7 jmp PLT0
8 PLT4: jmp *fsym4@GOT(%rip) /* GOT[6] */
9 pushq $0x3
10 jmp PLT0
11 ...
12 PLTn: jmp *fsymn@GOT(%rip) /* GOT[n+2] */
13 pushq $0xn-1
14 jmp PLT0

Listing 6: Example of a non-IBT PLT (x86-64 ABI).

Direct invocations of f0/f1 use the .cfi symbols instead (ln. 11).
Call sites that correspond to indirect control-flow transfers are
further instrumented with an IRM that performs confinement as
follows. First, the type of the involved pointer that is dereferenced
(e.g., function pointer, vtable entry) is analyzed, and matched with
one of the sets that correspond to equivalence classes. In the exam-
ple above, a function-pointer dereference occurs in ln. 9, and the
target of the respective indirect branch in loaded in the general-
purpose register %rax. Moreover, the type of that function pointer
matches the type of functions 0x4011d0 and 0x4011f0 (originally
f0 and f1), and so it is further associated with the set (equivalence
class) whose trampoline starts at address 0x401250. The IRM that
confines the indirect branch instruction in ln. 9 spans ln. 3–ln. 8
(plus ln. 13), and effectively asserts if the value in %rax points to an
address that corresponds to its associated trampoline. That is, if the
value of %rax indeed points within 0x401250–0x40125f, then the
computed control-flow transfer (ln. 9) will be allowed, ultimately
reaching 0x4011d0 (f0.cfi) or 0x4011f0 (f1.cfi) via the surro-
gate symbols at 0x401250 (f0) and 0x401258 (f1), respectively.

A.2 Non-IBT PLT
In Linux, the x86-64 platform leverages the ELF (Executable and

Linkable Format) binary/file format for storing executables, object
files, dynamic shared objects (DSOs), and even core dumps [99].
Cross-DSO function calls correspond to control-flow transfers from
one DSO (e.g., shared library; .so ELF file of type ET_DYN), or the
main application executable (ELF file of type ET_EXEC), to functions
(i.e., symbols of type FUNC) that are located in different DSOs. Given
that the final placement of the corresponding DSOs, in the vir-
tual address space, will be performed at load time, by the dynamic
linker/loader (ld.so)—and is affected by features like ASLR—, spe-
cial care is required for supporting cross-DSO function calls.

The x86-64 ABI [21] specifies how this process is performed and
what ELF features it entails. Cross-DSO function calls leverage the
PLT/GOT (Procedure Linkage Table/Global Offset Table) mecha-
nism [131]. Every DSO that invokes functions that are “external”
to it (i.e., they belong to a different DSO) contains a special (ELF)
code section dubbed .plt.

This section is further split into “slots” (i.e., entries), of 16 bytes
each, as shown in Listing 6. The first entry (PLT0) is a special one,
while each of the rest (PLT1–PLTn) correspond to external function
calls. Whenever an ELF-compatible toolchain (e.g., GCC, LLVM)
needs to emit code for an external function call, it will do so by
generating a (direct) call instruction that transfers control to the
respective PLT slot. For instance, in the example above, if the DSO
whose PLT is shown in Listing 6, needs to invoke function fsym3,
which is located in a different DSO, then the toolchain will generate
call sites that transfer control (directly) to PLT3. (The process is
similar for fsym4–fsymn.) Every PLT slot is associatedwith an entry
in GOT—which, in turn, is stored into a special (ELF) data section
dubbed .got. GOT is effectively an “array” of memory addresses,
each for every external symbol (of type FUNC, OBJECT, etc.) used
by the respective DSO. In other words, only a subset of the GOT
entries are related to PLT slots; the rest correspond to (cross-DSO)
data-object references, and are initialized eagerly.

If, say, the DSO whose PLT is shown in Listing 6 wants to invoke
fsym3, which is located in a different DSO, the process is as follows:
first, the control will be transferred to PLT3 (ln. 5), by a direct call
instruction (located in one of the executable sections, e.g., .text)
of the current DSO; assuming that “PLT[3]” is associated with
“GOT[5]”, the memory-indirect jmp instruction in ln. 5 will transfer
control to the code location stored at GOT[5] (fsym3@GOT); initially,
at load time, ld.so makes GOT[5] point at the push instruction
of PLT3 (ln. 6)—and GOT[6] at the push instruction of PLT4 (ln. 9),
etc.—effectively causing the indirect jmp instructions (ln. 5, ln. 8,
ln. 12, . . .) to “fall-through;” next, an index (non-negative) value is
pushed onto the stack (ln. 6), and the control is (directly) transferred
to PLT0 (ln. 7); PLT[0] is a special entry, as it pushes onto the
stack a reference to the current DSO (stored at GOT[1], ln. 1) and
then transfers control to the address stored at GOT[2], via the
memory-indirect jmp instruction in ln. 2; GOT[2] is also initialized
during load time (by ld.so), and contains the address of the (part
of the) dynamic linker/loader for performing symbol resolution; at
this point, ld.so will unwind the stack, identify that the binding
request came from the current DSO, via the value pushed onto the
stack in ln. 1, as well as the symbol in question (i.e., fsym3), via
the index pushed onto the stack in ln .6, and look for an already-
loaded (and relocated) DSO (i.e., the foreign DSO) that provides (or
“exports”) fsym3 in its .dynsym ELF section; once the address of the
symbol, in the foreign DSO, is identified, ld.so will finally store
it at GOT[5], and control will be transferred to fsym3. Next time
a direct call instruction transfers control to PLT3, the memory-
indirect jmp instruction in ln. 5 will branch straight to fsym3 (via
GOT[5]), without triggering the symbol resolution process again.

This intertwined mechanism is called lazy binding as it results
in resolving the symbol in question (e.g., function fsym3), dynami-
cally, at runtime, upon the first use. However, note that only code
symbols (of type FUNC) can be resolved lazily; data symbols (e.g., of
type OBJECT) are always resolved eagerly, at load time (by ld.so).
RELRO (relocation read-only) [147] builds upon this observation
and further separates the PLT-related part(s) of GOT, placing the re-
spective entries under a different ELF section dubbed .got.plt; the
rest of the GOT entries (which are resolved eagerly) are left under
.got, which is write-protected by the dynamic linker/loader once
load-time (data) symbol resolution is completed. RELRO (-z relro

FineIBT RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong

1 PLT0: pushq GOT+8(%rip) /* GOT[1] */
2 jmp *GOT+16(%rip) /* GOT[2] */
3 nopl 0x0(%rax) /* PAD */
4 ...
5 PLT3: endbr64
6 pushq $0x2
7 jmp PLT0
8 xchg %ax,%ax /* PAD */
9 PLT4: endbr64
10 pushq $0x3
11 jmp PLT0
12 xchg %ax,%ax /* PAD */
13 ...
14 PLTn: endbr64
15 pushq $0xn-1
16 jmp PLT0
17 xchg %ax,%ax /* PAD */
18

19 ...
20 SPLT3: endbr64
21 jmp *fsym3@GOT(%rip) /* GOT[5] */
22 nopw 0x0(%rax,%rax,1) /* PAD */
23 SPLT4: endbr64
24 jmp *fsym4@GOT(%rip) /* GOT[6] */
25 nopw 0x0(%rax,%rax,1) /* PAD */
26 ...
27 SPLTn: endbr64
28 jmp *fsymn@GOT(%rip) /* GOT[n+2] */
29 nopw 0x0(%rax,%rax,1) /* PAD */

Listing 7: IBT PLT (x86-64 ABI).

or -Wl,-z,relro; denoted with the PT_GNU_RELRO ELF header)
aims at reducing the attack surface of GOT, effectively making
the entries immutable that should remain constant post load-time.
Lastly, in addition to the above, RELRO can be configured to operate
in “full” mode (i.e., by enabling BIND_NOW; -z now or -Wl,-z,now),
which results in turning on eager binding. Under full RELRO, the
dynamic linker/loader resolves all GOT entries at load time and
write-protects .got (under full RELRO, .got.plt is again merged
with .got, as there is no reason to keep them separate), thereby
preventing an attacker from tampering with the GOT completely
(and the binding process, in general). Note that under full RELRO,
PLT entries branch straight to symbols in foreign DSOs, skipping
the on-demand resolution process via PLT[0].

A.3 IBT PLT
The main differences with the original, plain x86-64 PLT are as

follows. First, the PLT of each IBT-hardened DSO consists of two
“tables,” mapped at the ELF sections .plt and .plt.sec, respec-
tively. Whenever an IBT-compatible toolchain (e.g., GCC, LLVM)
needs to emit code for an external function call (i.e., a control-flow
transfer to a symbol of type FUNC that is located in a foreign DSO),
it does so by emitting a (direct) call instruction that links-with an
entry in .plt.sec (SPLT1–SPLTn in Listing 7).

For example, if the current DSO needs to, say, invoke the (code)
symbol fsym3, which is located in a different .so ELF file, then
the respective (direct) call will be in the following form: call
fsym3@SPLT—i.e., a direct branch to symbol SPLT3 (ln .20). (.plt.sec
includes an entry for each external symbol of type FUNC.) Next, at
runtime, whenever control reaches SPLT3, the memory-indirect
jmp instruction in ln. 21 will transfer control either to (a) fsym3 at
a foreign DSO (iff symbol resolution has already been performed
by the dynamic linker/loader, ld.so), or (b) PLT3 (ln. 5) at the .plt
section of the current DSO, via the corresponding GOT entry/-
slot (i.e., fsym3@GOT, “GOT[5]”). (The process is similar for fsym4–
fsymn.) Lastly, every entry in .plt.sec has an associated entry in
.plt (SPLTn { PLTn; ln. 5, ln. 9, . . ., ln.14) for handling lazy (or
delayed) binding as usual.

Note that every entry in .plt.sec begins with an endbr instruc-
tion (SPLT3; ln. 20, SPLT4; ln. 23, . . ., SPLTn; ln. 27), in order to
support address-taken PLT slots—i.e., allow PLT entries to be tar-
geted by indirect call instructions. (This typically occurs when a
symbol with external linkage is address-taken in the current DSO.)
In addition, every entry in .plt needs also to begin with an endbr
instruction, as they are targeted by the corresponding memory-
indirect jmp instructions in .plt.sec, which, in turn, leverage the
untrusted GOT—recall that PLT-related GOT slots are necessarily
writeable (as they need to be updated, lazily, by ld.so) and hence
an attacker can tamper with them.

This approach increases the set of allowed branch targets by
a great margin: (1) every address-taken function is naturally an
allowed target (i.e., endbr-instrumented), followed by (2) every
symbol with non-local linkage, in every DSO (as they can be targets
of the memory-indirect jmp instructions in .plt.sec sections),
followed by (3) every .plt.sec slot (they can be address-taken),
followed by (4) every .plt slot (targets of .plt.sec entries).

A.4 Resilience against Spectre-v1
We implement the attack described in Section 7.2 with a tight

loop that is run 10 million times. In each iteration, we indirectly
branch to a FineIBT instrumented prologue 10 times with a valid
SID, to train the conditional branch predictor, before indirectly
branching to the prologue with an invalid SID. We detect mis-
speculation during the invalid SID check with a memory-read Spec-
tre gadget (movl (%rbx), %eax) that proceeds the check whose
transient execution we observe with a Flush+Reload [181] cache-
based side-channel. This allows us to measure the likelihood of
transiently executing instructions after the SID check. To deter-
mine the size of the speculative window, we pad the memory read
with (single-byte) nop instructions, until we no longer observe the
gadget executed (successfully) in a transient fashion. The assembly
code of the aforementioned experiment is shown in Listing 8.

RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong A. J. Gaidis, J. Moreira, K. Sun, A. Milburn, V. Atlidakis, and V. P. Kemerlis

Table 6: Speculative window size of the conditional branch in FineIBT’s IRM code.

Window Size (Bytes) 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Hits/10M (jne) 17 12 11 6 7 18 17 18 13 1 0 1 2 1 0 0

Hits/10M (je) 17 13 10 16 10 16 14 11 3 15 3 2 15 0 0 0

1 lea .fineibt_prologue(%rip), %r10
2 lea .do_test(%rip), %r11
3 lea .do_train(%rip), %r12
4 mov $0xa, %ecx /* init loop counter */
5 .loop_start:
6 clflush 0(%rbx) /* flush target cache line */
7 mfence
8 lfence
9 test %ecx, %ecx
10 cmove %r11, %r12 /* if ZF==1 do test run */
11 notrack jmp *%r12
12 nop
13 .do_train:
14 mov $0xdeadbeef, %eax /* valid SID */
15 jmp *%r10
16 .do_test:
17 mov $0xdeadbe42, %eax /* invalid SID */
18 jmp *%r10
19 nop
20 .fineibt_coldpath:
21 jmp .reload
22 .fineibt_prologue:
23 endbr64
24 sub $0xdeadbeef, %eax
25 jne .fineibt_coldpath
26 /* {0, ..., N} nops to measure window size */
27 movl (%rbx), %eax /* access memory */
28 dec %ecx
29 jmp .loop_start
30 .reload:
31 mfence
32 lfence
33 rdtsc /* start memory access timer */
34 lfence
35 movl %eax, %esi
36 movl (%rbx), %eax /* access memory */
37 lfence
38 rdtsc /* stop memory access timer */
39 subl %esi, %eax

Listing 8: Assembly code that is used to measure the spec-
ulative behavior (i.e., resilience against Spectre-v1) of the
conditional branch (je/jne) in FineIBT’s IRM code.

