FairTest:

Discovering unwarranted associations in data-driven applications

IEEE EuroS&P April 28th, 2017

Florian Tramèr¹, Vaggelis Atlidakis², Roxana Geambasu², Daniel Hsu², Jean-Pierre Hubaux³, Mathias Humbert⁴, Ari Juels⁵, Huang Lin³

¹Stanford University, ²Columbia University, ³École Polytechnique Fédérale de Lausanne, ⁴Saarland University, ⁵Cornell Tech

Websites Vary Prices, Deals Based on Users' Information

By JENNIFER VALENTINO-DEVRIES, JEREMY SINGER-VINE and ASHKAN SOLTANI December 24, 2012

It was the same Swingline stapler, on the same Staples.com website. But for Kim Wamble, the price was \$15.79, while the price on Trude Frizzell's screen, just a few miles away, was \$14.29.

A key difference: where Staples seemed to think they were located.

In what appears to be an unintended side effect of Staples' pricing methods-likely a function of retail competition with its rivals-the Journal's testing also showed that areas that tended to see the discounted prices had a higher average income than areas that tended to see higher prices.

Google Photos labeled black people 'gorillas'

Jessica Guynn, USA TODAY 2:10 p.m. EDT July 1, 2015

SAN FRANCISCO — Google has apologized after its new Photos application identified black people as "gorillas."

On Sunday Brooklyn programmer Jacky Alciné tweeted a screenshot of photos he had uploaded in which the app had labeled Alcine and a friend, both African American, "gorillas."

Yontan Zunger, an engineer and the company's chief architect of Google+, responded swiftly to Alciné on Twitter: "This is 100% Not OK." And he promised that Google's Photos team was working on a fix.

These are **software bugs**: need to *actively test for them* and *fix them (i.e., debug)* in data-driven applications... *just as with functionality, performance, and reliability bugs*.

Unwarranted Associations Model

Limits of preventative measures

What doesn't work:

- Hide protected attributes from data-driven application.
- Aim for statistical parity w.r.t. protected classes and service output.

Foremost challenge is to even detect these unwarranted associations.

A Framework for Unwarranted Associations

1. Specify relevant data features:

- Protected variables
- "Utility": a function of the algorithm's output
- Explanatory variables
- Contextual variables

(e.g., Gender, Race, ...)
(e.g., Price, Error rate, ...)
(e.g., Qualifications)
(e.g., Location, Job, ...)

- 2. Find **statistically significant associations** between protected attributes and utility
 - Condition on explanatory variables
 - Not tied to any particular *statistical metric* (e.g., odds ratio)
- 3. Granular search in **semantically meaningful subpopulations**
 - Efficiently list subgroups with highest adverse effects

FairTest: a testing suite for data-driven apps

- Finds context-specific associations between protected variables and application outputs, conditioned on explanatory variables
- Bug report ranks findings by assoc. strength and affected pop. size

Core of FairTest is based on statistical machine learning

8

Reports for Fairness bugs

- <u>Example</u>: simulation of location based pricing scheme
- Test for disparate impact on low-income populations
 - Low effect over whole US population
 - High effects in specific subpopulations

∂				
Report of associations of O=Price on S _i =Income: Assoc. metric: norm. mutual information (NMI).				
Global Population of size 494,436				
p-value=3.34e-10 ; NMI=[0.0001, 0.0005]				
Price	Income <\$50K	Income >=\$50K	Total	
High	15301 (6%)	13867 (6%)	29168 (6%)	
Low	234167(94%)	231101(94%)	465268 (94%)	
Total	249468(50%)	244968 (50%)	494436(100%)	
1. Subpopulation of size 23,532				
Context={State: CA, Race: White}				
p-value=2.31e-24 ; NMI=[0.0051, 0.0203]				
Price	Income <\$50K	Income >=\$50K	Total	
High	606 (8%)	691 (4%)	1297 (6%)	
Low	7116(92%)	15119(96%)	22235 (94%)	
Total	7722(33%)	15810(67%)	23532(100%)	
2. Subpopulation of size 2,198				
Context={State: NY, Race: Black, Gender: Male}				
p-value=7.72e-05 ; NMI=[0.0040, 0.0975]				
Price	Income <\$50K	Income >=\$50K	Total	
High	52 (4%)	8 (1%)	60 (3%)	
Low	1201(96%)	937 (99%)	2138 (97%)	

9

Goal: find most strongly affected user sub-populations

Split into sub-populations with Increasingly strong associations between protected variables and application outputs

Association-Guided Decision Trees

- Efficient discovery of contexts with high associations
- Outperforms previous approaches based on *frequent itemset mining*
- Easily interpretable contexts by default
- Association-metric agnostic

Metric	Use Case	
Binary ratio/difference	Binary variables	
Mutual Information	Categorical variables	
Pearson Correlation	Scalar variables	
Regression	High dimensional outputs	
Plugin your own!	???	

• Greedy strategy (some bugs could be missed)

Predictor of whether patient will visit hospital again in next year (from winner of 2012 Heritage Health Prize Competition)

FairTest findings: strong association between age and prediction error rate

12

(e.g., if model is used to adjust insurance premiums)

Debugging with FairTest

Are there confounding factors?

Do associations disappear after conditioning?

 \Rightarrow Adaptive Data Analysis!

Example: the healthcare application (again)

- Estimate prediction confidence (target variance)
- Does this **explain** the predictor's behavior?
- Yes, partially

XY

FairTest helps developers understand & evaluate potential association bugs.

Other applications studied using FairTest

- Image tagger based on ImageNet data
 - \Rightarrow Large output space (~1000 labels)
 - ⇒ FairTest automatically switches to regression metrics
 - ⇒ Tagger has *higher error rate* for pictures of black people

14

- Simple movie recommender system
 - ⇒ Men are assigned movies with *lower ratings* than women
 - ⇒ Use personal preferences as **explanatory factor**
 - ⇒ FairTest finds no significant bias anymore

Closing remarks

The Unwarranted Associations Framework

- Captures a broader set of algorithmic biases than in prior work
- Principled approach for statistically valid investigations

FairTest

• The first end-to-end system for evaluating algorithmic fairness

Developers need better statistical training and tools to make better statistical decisions and applications.

http://arxiv.org/abs/1510.02377

anks