FairTest:
Discovering unwarranted associations in data-driven applications

IEEE EuroS&P
April 28th, 2017

Florian Tramèr1, Vaggelis Atlidakis2, Roxana Geambasu2, Daniel Hsu2, Jean-Pierre Hubaux3, Mathias Humbert4, Ari Juels5, Huang Lin3

1Stanford University, 2Columbia University, 3École Polytechnique Fédérale de Lausanne, 4Saarland University, 5Cornell Tech
Websites Vary Prices, Deals Based on Users’ Information

By JENNIFER VALENTINO-DEVRIES, JEREMY SINGER-VINE and ASHKAN SOLTANI
December 24, 2012

It was the same Swingline stapler, on the same Staples.com website. But for Kim Wamble, the price was $15.79, while the price on Trude Frizzell’s screen, just a few miles away, was $14.29.

A key difference: where Staples seemed to think they were located.

In what appears to be an unintended side effect of Staples’ pricing methods—likely a function of retail competition with its rivals—the Journal’s testing also showed that areas that tended to see the discounted prices had a higher average income than areas that tended to see higher prices.
Google Photos labeled black people 'gorillas'

Jessica Guynn, USA TODAY 2:10 p.m. EDT July 1, 2015

SAN FRANCISCO — Google has apologized after its new Photos application identified black people as "gorillas."

On Sunday Brooklyn programmer Jacky Alciné tweeted a screenshot of photos he had uploaded in which the app had labeled Alcine and a friend, both African American, "gorillas."

Yontan Zunger, an engineer and the company's chief architect of Google+, responded swiftly to Alciné on Twitter: "This is 100% Not OK." And he promised that Google's Photos team was working on a fix.

These are **software bugs**: need to *actively test for them* and *fix them (i.e., debug)* in data-driven applications... *just as with functionality, performance, and reliability bugs.*
Unwarranted Associations Model

User inputs → Data-driven application → Application outputs

Protected inputs
Limits of preventative measures

What doesn’t work:

- **Hide protected attributes** from data-driven application.
- Aim for **statistical parity** w.r.t. protected classes and service output.

Foremost challenge is to even detect these unwarranted associations.
A Framework for Unwarranted Associations

1. Specify **relevant data features**:
 - Protected variables (e.g., Gender, Race, …)
 - “Utility”: a function of the algorithm’s output (e.g., Price, Error rate, …)
 - Explanatory variables (e.g., Qualifications)
 - Contextual variables (e.g., Location, Job, …)

2. Find **statistically significant associations** between protected attributes and utility
 - *Condition on* explanatory variables
 - Not tied to any particular *statistical metric* (e.g., odds ratio)

3. Granular search in **semantically meaningful subpopulations**
 - Efficiently list *subgroups* with highest adverse effects
• Finds context-specific associations between protected variables and application outputs, conditioned on explanatory variables

• Bug report ranks findings by assoc. strength and affected pop. size
A data-driven approach

Core of FairTest is based on statistical machine learning

Find context-specific associations

Statistically validate associations

Statistical machine learning internals:
- top-down spatial partitioning algorithm
- confidence intervals for assoc. metrics
- ...

Data

Ideally sampled from relevant user population

Report of associations of $O=Price \text{ on } S=Income$:
Assoc. metric: norm. mutual information (NMI).
Global Population of size 494,436
p-value $= 3.34 \times 10^{-10}$; NMI $= (0.0001, 0.0005)$

<table>
<thead>
<tr>
<th></th>
<th>Income <$50K</th>
<th>Income \geq50K</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>2916 (6%)</td>
<td>13467 (6%)</td>
<td>16383 (59%)</td>
</tr>
<tr>
<td>Low</td>
<td>234167 (94%)</td>
<td>231303 (94%)</td>
<td>465468 (94%)</td>
</tr>
<tr>
<td>Total</td>
<td>249468 (50%)</td>
<td>244968 (50%)</td>
<td>494436 (100%)</td>
</tr>
</tbody>
</table>

1. Subpopulation of size 23,532
Context: [State: CA, Race: White]
p-value $= 2.31 \times 10^{-4}$; NMI $= (0.0031, 0.0039)$

<table>
<thead>
<tr>
<th></th>
<th>Income <$50K</th>
<th>Income \geq50K</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>606 (8%)</td>
<td>691 (4%)</td>
<td>1297 (6%)</td>
</tr>
<tr>
<td>Low</td>
<td>7116 (92%)</td>
<td>13119 (96%)</td>
<td>22235 (94%)</td>
</tr>
<tr>
<td>Total</td>
<td>7722 (13%)</td>
<td>15810 (100%)</td>
<td>23532 (100%)</td>
</tr>
</tbody>
</table>

2. Subpopulation of size 2,198
Context: [State: NY, Race: Black, Gender: Male]
p-value $= 7.73 \times 10^{-5}$; NMI $= (0.0040, 0.0075)$

<table>
<thead>
<tr>
<th></th>
<th>Income <$50K</th>
<th>Income \geq50K</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>52 (4%)</td>
<td>8 (1%)</td>
<td>60 (3%)</td>
</tr>
<tr>
<td>Low</td>
<td>120 (96%)</td>
<td>937 (99%)</td>
<td>2133 (97%)</td>
</tr>
<tr>
<td>Total</td>
<td>1253 (57%)</td>
<td>945 (43%)</td>
<td>2198 (100%)</td>
</tr>
</tbody>
</table>
• **Example:** simulation of location based pricing scheme

• Test for **disparate impact on low-income populations**

 • Low effect over whole US population

 • High effects in specific sub-populations
Association-Guided Decision Trees

Goal: find most strongly affected user sub-populations

Split into sub-populations with increasingly strong associations between protected variables and application outputs.
Association-Guided Decision Trees

- Efficient discovery of contexts with high associations
- Outperforms previous approaches based on frequent itemset mining
- Easily interpretable contexts by default
- Association-metric agnostic

<table>
<thead>
<tr>
<th>Metric</th>
<th>Use Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binary ratio/difference</td>
<td>Binary variables</td>
</tr>
<tr>
<td>Mutual Information</td>
<td>Categorical variables</td>
</tr>
<tr>
<td>Pearson Correlation</td>
<td>Scalar variables</td>
</tr>
<tr>
<td>Regression</td>
<td>High dimensional outputs</td>
</tr>
<tr>
<td>Plugin your own!</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Greedy strategy (some bugs could be missed)
Example: healthcare application

Predictor of whether patient will visit hospital again in next year (from winner of 2012 Heritage Health Prize Competition)

FairTest findings: strong association between age and prediction error rate

Association may translate to quantifiable harms (e.g., if model is used to adjust insurance premiums)
Debugging with FairTest

Are there **confounding factors**?
Do associations disappear **after conditioning**?
⇒ **Adaptive Data Analysis!**

Example: the healthcare application (again)
- Estimate **prediction confidence** (target variance)
- Does this **explain** the predictor’s behavior?
- Yes, partially

FairTest helps developers understand & evaluate potential association bugs.
Other applications studied using FairTest

• Image tagger based on ImageNet data
 ⇒ Large output space (~1000 labels)
 ⇒ FairTest automatically switches to regression metrics
 ⇒ Tagger has *higher error rate* for pictures of black people

• Simple movie recommender system
 ⇒ Men are assigned movies with *lower ratings* than women
 ⇒ Use personal preferences as *explanatory factor*
 ⇒ FairTest finds no significant bias anymore
The *Unwarranted Associations* Framework

- Captures a broader set of algorithmic biases than in prior work
- Principled approach for statistically valid investigations

FairTest

- The first end-to-end system for evaluating algorithmic fairness

Developers need better statistical training and tools to make better statistical decisions and applications.

Thanks!