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Abstract
Historically, researchers have treated memory safety-based and
speculative execution attacks as two separate domains. Recent work
has introduced Speculative Memory-error Abuse (SMA) attacks,
which combine memory corruption vulnerabilities with Spectre-
like primitives. Using SMA, an attacker can leak sensitive program
information and defeat a wide variety of memory-corruption miti-
gations, including (K)ASLR, software-based XOM, and even ARM
PA, eventually carrying out an end-to-end (architecturally-visible)
exploit. We present Eclipse: a novel protection scheme against
SMA attacks. Eclipse works by propagating artificial data depen-
dencies onto sensitive data, preventing the CPU from using attacker-
controlled data during speculative execution. We demonstrate that
Eclipse provides comprehensive protection against speculative-
probing and PACMAN-style attacks, two prominent examples of
SMA attacks that target both the x86(-64) and ARM architectures.
We evaluate the performance of Eclipse on x86-64 and demon-
strate that it introduces minimal overhead, compared to alternative
hardening approaches, incurring ≈0%–9.5% slowdown on SPEC
CPU 2017, up to 8.6% slowdown in real-world applications, and
negligible overhead in the Linux kernel.
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1 Introduction
Memory errors have been a prevalent software security problem
for decades and are still amongst the most prominent software
defects [38, 77, 97]. By corrupting sensitive program data, attackers
can achieve control-flow hijacking using various code-reuse [16]
techniques and eventually perform arbitrary computations (usually
via means of arbitrary code execution).

More recently, the Spectre family of attacks [55] have shown that
an adversary can leverage speculative execution [41] to access sensi-
tive program data that is not accessible in an architecturally-visible
manner by bringing it into micro-architectural buffers and subse-
quently leaking it using micro-architectural side channels [66].

Past research treated Spectre attacks and memory errors as two
separate domains. However, recent work [37, 72, 93] has introduced
a new class of attacks that we refer to as Speculative Memory-
error Abuse (SMA) attacks, which work by combining memory
corruption vulnerabilities with Spectre-like primitives to bypass
both memory-corruption and Spectre mitigations. SMA attacks
allow adversaries to circumvent memory-corruption mitigations
and leak sensitive program information (such as a victim program’s
code layout [37] or ARM Pointer Authentication Codes [93]) by
causing the program to speculatively use corrupted data, avoiding
crashes that are only triggered when the offending instructions are
executed architecturally. Because SMA attacks can be carried out
without causing any crashes, crash-sensitive software, such as OS
kernels, become an attractive target. SMA attacks are not trivial to
mitigate since neither standardmemory-corruptionmitigations, nor
mitigations for speculative execution attacks, are effective [72, 93].

In this work, we present Eclipse: a comprehensive mitigation
against SMA attacks. The core insight behind Eclipse is that CPUs
cannot predict unresolved values (e.g., values that have not yet been
computed), so instructions that have unresolved data dependencies
cannot be executed, even in the speculative domain (until their
dependencies are resolved). Eclipse propagates artificial data de-
pendencies to prevent instructions from operating on corrupted
data during speculative execution. In antithesis to other approaches
that can mitigate SMA [21, 48], Eclipse does not completely stop
speculation and hardens only specific code patterns leveraged by
SMA attacks, improving performance without sacrificing security.
Eclipse focuses on SMA attacks that exploit forward-edge control-
flow transfers, while backward-edge protection (against SMA) is
assumed to be handled by other mitigations.
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We demonstrate that Eclipse successfully prevents SMA at-
tacks, such as Speculative Probing (SP) [37] and PACMAN [93], on
both x86-64 and ARM. We implement Eclipse as a compiler-based
mitigation for the x86-64 architecture that seamlessly supports hard-
ening both kernel code and userland applications, while incurring
substantially lower overhead compared to alternative approaches
formitigating SMA:≈0%–9.5% in the SPEC 2017 CPU benchmarking
suite, ≈0%–8.6% in real-world applications, and negligible overhead
in the Linux kernel.

2 Background
2.1 Memory Safety
Programs written in memory- and/or type-unsafe languages, such
as C and C++, are prone to memory errors [108], which allow an ad-
versary to corrupt and/or disclose (i.e., leak) a victim program’s mem-
ory contents. Traditionally, attackers would abuse memory corrup-
tion to perform code injection [83], where they effectively inject an
instruction stream into an executable region in a program’s address
space and redirect control flow to it. However, with the adoption of
non-executable memory [114] on contemporary platforms [70, 76],
and the enforcement of the W^X memory policy [84, 94], code
injection has largely been replaced by code reuse [16] as the de
facto method for exploiting memory-corruption vulnerabilities. By
corrupting control-flow “influencing” data (e.g., code pointers [57]),
attackers can employ various techniques, such as {return, jump,
call}-oriented programming [14, 35, 101], to hijack the program’s
control flow and execute existing chunks of code in the victim
program’s address space out-of-context. Apart from code reuse,
data-oriented attacks [43, 49] allow an attacker to exploit memory
corruption to perform arbitrary computations by only tampering
with select program data, while data-only attacks [23, 78, 88, 96]
target non-control data.

Several defense mechanisms have been developed over the years
that aim to raise the bar for exploiting memory errors. Information-
hiding schemes conceal sensitive program information, such as the
addresses or contents of program regions (e.g., code or data [69,
111]), by employing coarse- [29, 86] or fine-grain [15, 28] memory-
layout randomization/diversification [32, 58], or by preventing read
access to code regions with execute-only memory (XOM) [87, 98].
Other approaches aim to mitigate memory-error exploitation via
integrity checking. Control-flow integrity (CFI) [10, 17, 33] restricts
control-flow transfers to only select, allowed program locations,
while code-pointer integrity (CPI) [57, 59, 90] ensures that code
pointers have not been tampered with prior to use. Overall, despite
decades of research, memory safety [79, 80] remains an open prob-
lem [104], as information-hiding and integrity-checking schemes
have been demonstrated to be bypassable [20, 30, 31, 35, 36, 81].

2.2 Transient Execution Attacks
Modern CPUs (aggressively) employ various mechanisms to avoid
CPU “idling” and maximize performance [41]. Examples include:
out-of-order execution, where the CPU re-orders the instruction
stream and executes subsequent instructions before preceding in-
structions have retired; and speculative execution, where the CPU

leverages various predictors to speculate on the outcome of instruc-
tions which have not yet been computed due to unresolved data de-
pendencies. These optimizations can prevent executed instructions
from being committed to the CPU’s architectural state—i.e., the CPU
“squashes” the instructions—in the event of a fault or mispredic-
tion. Instructions whose results are never committed to the CPU’s
architectural state are considered to only be transiently executed.

Even though transiently executed instructions do not modify
the CPU’s architectural state, they do leave behind observable
traces in its micro-architectural state (e.g., the cache [55, 65], load
ports [100], line-fill buffers [109], and store buffers [19]). These
micro-architectural side effects give rise to transient execution at-
tacks [18], which coerce the CPU to transiently execute bogus
computations before leaking results via micro-architectural side
channels [40, 66, 109, 112, 118]. In general, transient execution at-
tacks can be divided into two categories, dubbed Meltdown and
Spectre, based on the cause of transient computation.
Meltdown. Attacks in the Meltdown category exploit transient,
out-of-order execution proceeding a faulting instruction. They have
been used to leak data across privilege boundaries and break process
isolation [113], separation between user and kernel space [65], and
confinement via Intel SGX [107, 113]. The majority of Meltdown
mitigations prevent access to data on the micro-architectural level
that are inaccessible architecturally. Newer micro-architectures
provide this directly in hardware [45], while existing ones require
microcode updates and/or software solutions [39, 48, 105].
Spectre. The Spectre category of attacks leaks sensitive program
data by (mis)training or tampering with CPU predictors to coerce
the CPU to speculatively execute attacker-chosen instructions that
access sensitive program data, which are subsequently leaked via
a micro-architectural side channel. Variants of Spectre are gener-
ally categorized based on the CPU predictor they are associated
with (i.e., the predictor that is mistrained or tampered with). In
Spectre-PHT (variant 1) [18], an attacker poisons the Pattern His-
tory Table (PHT) to cause the CPU to mispredict the outcome of
conditional branches and speculatively execute code on the mispre-
dicted edge of the branch [54, 55]. In Spectre-BTB (variant 2) [18],
an attacker mistrains the Branch Target Buffer (BTB) to cause a mis-
prediction of a computed (i.e., indirect) branch and speculatively
hijack the program’s control flow. Other variants include Spectre-
RSB (i.e., “ret2spec”), which exploits the Return Stack Buffer [56, 71]
used for predicting targets of return instructions, and Spectre-STL
(variant 4) [50], which exploits the CPU’s Store-To-Load forwarding
logic to speculatively forward stale data to a load instruction.

Researchers and CPU vendors [11, 45] have introduced both
software [22] and hardware [42] defenses for many of the Spectre
variants. Since the fundamental cause of all Spectre variants is spec-
ulative execution, one mitigation approach is to place serializing
instructions (e.g., lfence instructions on x86) before potentially
vulnerable code locations to entirely prevent their speculative exe-
cution [11, 45, 68]. CPU vendors continue to recommend the use
of serializing instructions to stop all types of speculative execu-
tion attacks [11, 48], and software vendors, such as the Linux ker-
nel [24, 51], have followed suit. Alternative mitigation approaches
include hindering the attacker’s ability to extract data through side
channels [52, 53, 117], or preventing CPU predictors from being
mistrained or tampered with [44, 46, 47].
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2.3 Speculative Load Hardening
Speculative Load Hardening (SLH) is a mitigation for Spectre-PHT
introduced as an LLVM compiler pass for x86-64 [67]. SLH blocks
Spectre-PHT leaks by preventing the CPU from executing instruc-
tions that load from memory during speculation. To achieve this,
SLH first identifies all memory loads which can potentially be
speculatively executed due to (mis)prediction of a preceding condi-
tional branch. Then, it instruments the given program to prevent
speculation from “consuming”: (1) the memory address used as an
operand by the load instruction, or (2) the loaded value itself. SLH
also supports hardening indirect branches preceded by conditional
branches, to mitigate Bounds Check Bypass Store (BCBS) [54]. In
BCBS, an attacker is assumed capable of speculatively overwriting
a value used as the target of a computed branch. By making data
used in computed branches “unavailable” during speculation, SLH
prevents speculative execution of indirect control-flow transfers.

2.4 Speculative Memory-error Abuse
Historically, researchers have treated memory errors and spec-
ulative execution attacks as two disjoint domains, each with its
own threat model and mitigations. However, recent attacks like
SPEAR [72], PACMAN [93], and BlindSide [37] have demonstrated
that memory corruption and speculative execution vulnerabilities
can be combined to bypass memory-safety-based mitigations. Col-
lectively, we refer to these attacks as Speculative Memory-error
Abuse (SMA), since they follow a common pattern: even though an
attacker’s attempts to exploit a memory corruption vulnerability
are normally hindered by memory corruption mitigations, specula-
tive execution allows the attacker to inhibit detection (e.g., suppress
crashes) and extract sensitive program information.

2.4.1 SMAAttacks. In this sectionwe highlight three SMA attacks—
SPEAR [72], PACMAN [93], and Blindside [37]—that span multiple
architectures (i.e., x86(-64) and ARM) and bypass various memory-
safety-based mitigations (e.g., (K)ASLR and ARM PA). Even though
the target of each attack differs, they all follow a common pattern:
data that was architecturally corrupted is used during speculative
execution, bypassing existing mitigations.
SPEAR. The first set of attacks, dubbed SPEAR [72], explores how
speculative execution can be leveraged to bypass conventional
hardening mechanisms. SPEAR demonstrates that an attacker can
bypass certain hardening schemes, such as GCC’s vtable verifi-
cation (VTV) [106], Go’s array bounds checks [34], and LLVM’s
Stack Smashing Protection (SSP) [27]. To achieve this, the attacker
(either architecturally or speculatively) overwrites data that would
normally trigger one of the aforementioned mechanisms. However,
these mechanisms only raise an error when corruption is detected
during non-speculative execution. By causing the CPU to speculate,
the adversary temporarily achieves speculative control-flow hijack-
ing and is able to access sensitive data, which they can leak through
a side channel before the mitigation is architecturally triggered.
PACMAN. The second attack, PACMAN [93], targets ARM CPUs
that provide support for Pointer Authentication (PA) [90]: a new
feature which protects the integrity of pointers using cryptographic
Message Authentication Codes (MACs), referred to as Pointer Au-
thentication Codes (PACs), embedded in unused pointer bits.

An invalid PAC causes a crash during pointer authentication
in non-speculative execution, but the crash is suppressed under
speculation. Thus, in PACMAN, an attacker leverages a memory
corruption vulnerability to overwrite a stored pointer with a pointer
of their choosing, including a corresponding, randomly guessed
PAC. They then cause the CPU to try authenticating the over-
written pointer under speculative execution; if they guessed an
incorrect PAC the pointer authentication will fail, but the crash
will be suppressed. If, however, the guessed PAC was correct, the
authentication will succeed and their pointer will be speculatively
dereferenced, leaving micro-architectural side effects visible, which
the attacker can observe to deduce the guessed PAC was correct.
BlindSide. The third set of attacks, dubbed Blindside [37], in-
troduces a technique called Speculative Probing (SP), which al-
lows an attacker to combine Spectre-like primitives with a single
memory corruption vulnerability to achieve speculative control-
flow hijacking. In Blindside, an attacker architecturally corrupts
a code pointer and uses it to construct probing primitives in order
to speculatively probe a victim program’s address space for sen-
sitive information, such as locations of memory regions, or even
memory contents, without causing crashes that would normally
occur under non-speculative program execution (e.g., by derefer-
encing a pointer to an unmapped memory page). The sensitive
information is subsequently leaked and leveraged by the attacker
to bypass certain information-hiding-based, memory-error miti-
gations, such as (K)ASLR [29, 86] or XOM [87, 98], to facilitate an
architectural control-flow hijacking attack. Importantly, traditional
approaches that try to stop speculative control-flow hijacking of
indirect branches by preventing tampering with the indirect branch
predictor [44, 47] are ineffective against SP since an attacker archi-
tecturally corrupts the code pointer used by the indirect branch.

2.4.2 SMA Mitigations. Several generic mitigations used against
speculative execution attacks could prevent SMA attacks; however,
all have significant drawbacks. First, techniques for hampering
cache-based side channels [52, 99, 117] can constrain an from at-
tacker leaking sensitive information, but do not stop them entirely,
as recent work has shown that other types of side channels can be
used instead [13, 112]. In short, identifying and obstructing all pos-
sible side channels is challenging. Second, the speculative execution
of instructions leveraged by the attacks (e.g., indirect branches, PAC
authentication instructions) can be prevented by injecting serializ-
ing instructions (e.g., lfence [48]) or instructions that force certain
data to be unavailable during speculation (e.g., SLH [21]). Unfortu-
nately, doing so naïvely incurs large performance overheads; SMA
attacks target specific code patterns, and current approaches, such
as SLH, are generic and not an ideal fit for SMA without adaptation.
Finally, completely eliminating memory corruption [79, 80] can
eliminate SMA, but such approaches have not yet gained traction.

3 Threat Model
Adversarial Capabilities. We assume an unprivileged attacker
aiming to carry out an SMA attack to bypass memory-error miti-
gations (e.g., (K)ASLR, ARM PA) and mount an end-to-end exploit.
We allow the attacker to (ab)use one or more spatial [79] or tem-
poral [80] memory errors, whenever and however they choose, to
build arbitrary write primitives to tamper with code pointers.
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1 ...
2 ...
3 ...
4 cmpl $0, %rax
5 je no_call
6 ...
7 ...
8 ...
9 callq *%rcx
10 .no_call:
11 ...

(a)

1 mov $0, %r12
2 mov $-1, %r11
3 ...
4 cmpl $0, %rax
5 je no_call
6 cmove %r11, %r12
7 ...
8 or %r12, %rcx
9 callq *%rcx
10 .no_call:
11 ...

(b)

Figure 1: Code snippet vulnerable to SP on x86-64 (a), and
the corresponding Eclipse-hardened snippet (b).

Further, the attacker is able to control the outcome of conditional
branches in the vulnerable program, implicitly allowing them to
(mis)train the conditional branch predictor (à la Spectre-PHT). Any
attempts by the attacker to alter other speculative behavior of the
program (i.e., other than the outcome of conditional branches by
mistraining branch predictors [12, 55]) are orthogonal to Eclipse.
Finally, the attacker can be co-located on the same machine as
the process running the vulnerable program and can observe the
micro-architectural state of the CPU via a side-channel attack, such
as Prime+Probe [66], Flush+Reload [118], etc. Overall, we assume
an adversary that is on par with the state-of-the-{art, practice} in
terms of SMA attacks [37, 72, 93].
Hardening Assumptions.We assume that the underlying plat-
form enforces the W^X policy [84, 94], preventing an attacker
from performing code injection [83]. Other memory-error miti-
gations, such as (K)ASLR [15, 29, 86], XOM [87, 98], CFI [10, 17],
and CPI [57, 59], are neither precluded nor required by Eclipse.
Similarly, mitigations against transient execution attacks [22, 42]
are orthogonal to Eclipse.

4 Mitigation Approach
Eclipse provides a generic approach for mitigating SMA attacks
independent of any particular architecture or SMA attack. In this
section, we first provide an overview of how an attacker carries
out SMA attacks, such as a (generic) SP attack and a (ARM-specific)
PACMAN attack, followed by a high-level description of Eclipse’s
instrumentation that thwarts such attacks. Further discussion of
how Eclipse generalizes to other architectures and SMA attacks
can be found in Section 9.

4.1 Speculative Probing
Overview. In an SP attack, an attacker probes a target program’s
address space for sensitive information. In the example that follows,
the attacker’s goal is to leak the address of a target program’s code
region. To do this, the attacker first finds a vulnerable piece of code
resembling the following:

if (cexpr) { ... (*fptr)(); ... }

Here, a code pointer (i.e., fptr) is conditionally dereferenced and
the attacker is able to: (a) corrupt memory to (architecturally) over-
write fptr, and (b) control the outcome of cexpr.

Using (a), the attacker can control where fptr points, and with
(b) they can train the conditional branch predictor to control when
the pointer is speculatively dereferenced.

Initially, fptr points to a valid address within the victim pro-
gram’s code region, which the attacker is unable to read. To begin
the attack, the attacker first trains the conditional branch predictor—
e.g., by repeatedly “taking” the conditional branch and architec-
turally dereferencing fptr. Next, the attacker leverages thememory
corruption vulnerability to overwrite fptr with an address where
they guess the program’s code region resides. Simultaneously, they
flip cexpr to ensure that fptr is only ever dereferenced specula-
tively, not architecturally, avoiding a crash if fptr targets invalid
memory. Because of the (mis)trained branch predictor, the CPU
speculatively dereferences fptr and attempts to fetch instructions
from the pointed-to location.

To determine if the guessed location targeted a valid code region,
the attacker uses a side channel (e.g., Prime+Probe [66]) to check
for signals that indicate whether the CPU has fetched any new
instructions. If no signal was detected, the guessed address most
likely does not reside in an executable page, and the process is
repeated, corrupting fptr with a new address. In a successful SP
attack, the attacker eventually guesses (i.e., corrupts the pointer
with), and subsequently leaks, a correct address belonging to the
program’s code region.
CPU State. The C code snippet above corresponds to the assem-
bly snippet in Figure 1a, which will serve as the basis for giving a
detailed description of the CPU’s register state that is further illus-
trated in Figure 3a. Figure 1b presents the corresponding Eclipse-
hardened snippet; we provide details about the instrumentation in
Section 5. A similar CPU state applies to SP attacks targeting ARM;
we omit this for brevity. The following description assumes the
attacker has already (mis)trained the conditional branch predictor,
corrupted fptr, and flipped cexpr.

First, the CPU tries to execute the compare instruction (cmpl)
on ln. 4 in Figure 1a ( 1 in Figure 3a). However, this instruction is
data dependent on the value of rax, which we assume has not yet
been resolved. As a result, the compare instruction cannot yet be
executed, and the value of rflags now becomes unresolved as well.
Next, the CPU tries to execute the conditional branch (je) on ln. 5
( 2 in Figure 3a); however, since the value of the rflags register is
currently unresolved, the correct outcome of the branch is unknown,
and the CPU speculates the outcome of the branch to avoid stalling.
Since the attacker has (mis)trained the CPU predictor, the CPU will
speculate that the indirect branch on ln. 9 should be executed ( 3
in Figure 3a), and will thus (speculatively) dereference the (attacker-
controlled) code pointer in rcx. If the attacker correctly guessed an
address in an executable page, the CPU will fetch the instructions
from that address and continue speculatively executing them ( 4
in Figure 3a). Even if the executed instructions are not committed
architecturally, they still leave an observable trace on the cache.

Eventually, the value of rax is resolved, and the CPU (non-
speculatively) executes the cmpl instruction and resolves the value
of rflags. Having resolved rflags, it then executes the condi-
tional branch, stops speculation, and jumps to the correct target of
the conditional branch: that is, .no_call on ln. 10.
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1 ...
2 ...
3 cmp w9, 0
4 b.eq no_call
5 ...
6 ...
7 mov x17, #0x0
8 ldr x8, [x16]
9 ...
10 autia x8, x17
11 blr x8
12 no_call:
13 ...

(a)

1 mov x20, #0x0
2 ...
3 cmp w9, 0
4 b.eq no_call
5 csetm x20, eq
6 csdb
7 mov x17, #0x0
8 ldr x8, [x16]
9 orr x8, x8, x20
10 autia x8, x17
11 blr x8
12 no_call:
13 ...

(b)

Figure 2: Code snippet vulnerable to PACMAN (a), and the
corresponding Eclipse-hardened snippet (b).

4.2 PACMAN
The goal of an attacker during a PACMAN attack [93] is to

overwrite a PA-signed pointer with another chosen pointer and
infer the valid PAC for the corrupted pointer by leaking the result
of a speculatively executed PAC authentication instruction [90]. To
do so, they first locate a PACMAN gadget, such as the one illustrated
in Figure 2a, which conditionally executes a PAC authentication
instruction and subsequently uses its result (e.g., branches to the
location pointed-to by the authenticated pointer). The Eclipse-
hardened version of the gadget is presented in Figure 2b; we provide
more details about the instrumentation in Section 5.

The PACMAN gadget starts with a conditional branch (b.eq)
instruction (ln. 4 in Figure 2a), then loads a modifier value in x17
(ln. 7) and a signed pointer in x8 (i.e., the pointer along with its
PAC stored in its upper bits) to be authenticated (ln. 8). Next, it
performs the authentication via autia (ln. 10), which, if successful,
will clear the PAC from the upper bits of x8, allowing the subsequent
indirect branch (ln. 11) to dereference it. If the authentication fails,
an exception will be raised.

The logic of the attack is similar to an SP attack (§4.1). The at-
tacker first trains the conditional branch predictor to execute the au-
thentication instruction (autia; ln. 10) speculatively. Subsequently,
they use a memory-corruption vulnerability to overwrite the stored
pointer with a value of their choice, including a (randomly-guessed)
PAC. Next, they detect whether the guessed PAC was correct by
observing whether the indirect branch (ln. 11) was taken (e.g., via a
side channel), which only happens if the preceding authentication
instruction (blr; ln. 10) produced a valid pointer. If the guessed PAC
was incorrect, the crash is suppressed due to speculative execution.

4.3 Eclipse Overview
Eclipse is a compiler-assisted solution for preventing SMA attacks,
such as SP and PACMAN. Eclipse first analyzes a vulnerable pro-
gram to identify the instructions that can be leveraged by an at-
tacker to carry out an SMA attack. The specific instructions differ
based on the respective attack that is being carried out (e.g., indirect
branches for SP or ARM Pointer Authentication instructions for
PACMAN); but, regardless of the scenario, they follow a common
pattern: the attacker can force the CPU to speculatively execute
them because of a mispredicted, preceding conditional branch (à la
Spectre-PHT). We call these SMA-Capable (SMAC) instructions.

After identifying the SMAC instructions, Eclipse hardens them
with instrumentation that propagates artificial data dependencies to
prevent them from operating on attacker-controlled data (e.g., cor-
rupted pointers) during speculative execution—inspired by the
instrumentation of SLH [21], which is used for hardening mem-
ory loads (during speculative execution) using predicate-guarded,
branchless code. Eclipse is based on the observation that, even
though the CPU can predict the outcome of control-flow instruc-
tions (e.g., conditional branches) and start speculative execution,
unresolved data dependencies cannot be predicted. Eclipse capital-
izes on this by tying the data dependency of the conditional branch
to the data used by the SMAC instructions. Effectively, Eclipse
breaks SMA by preventing the SMAC instructions from using the
data (i.e., preventing 3 in Figure 3a from occurring) until the
data dependency—and thus the correct outcome of the conditional
branch—is resolved. Eclipse has three main advantages compared
to alternative approaches that can mitigate SMA (§2.4.2).

First, it does not require any hardware modification and can
be implemented solely in software. Second, it does not rely on
completely eliminating side channels or memory-corruption vul-
nerabilities, but instead prevents SMAC instructions from using
(potentially) corrupted data during speculative execution. Third, it
prevents SMA attacks without completely stopping speculation—
it only delays the CPU from learning the value of the data used
by the SMAC instructions until the data dependency is resolved.
This allows the CPU to still: (a) speculatively execute any other
non-data-dependent instructions; and (b) perform (nested) specu-
lative execution (e.g., predict the outcome the indirect branch in
SP, or indirect branches using the authenticated pointer in PAC-
MAN), keeping performance overhead low in cases where the CPU
speculates correctly.

5 Design
Eclipse prevents SMAC instructions from using (potentially cor-
rupted) data (e.g., code or data pointers) during speculative exe-
cution, yet improving performance by preserving other forms of
speculation—e.g., nested speculation or speculative execution of
non-SMAC instructions. To achieve this, Eclipse identifies and
instruments only the specific code leveraged in SMA attacks and
does not make use of speculation barriers.

In what follows, we first describe the design of Eclipse in the
context of SP attacks on x86(-64) before outlining how Eclipse can
be applied to ARM and PACMAN attacks in Section 5.3.

5.1 SMAC Instruction Identification
Eclipse first identifies which specific indirect branches need to be
hardened in order to prevent SP. Notably, Eclipse does not harden
all indirect branches in the program. Instead, it locates and hardens
only SMAC indirect branches: indirect branches that can potentially
be speculatively executed as a result of the CPU mispredicting a
preceding conditional branch. Figure 4 presents an example of a
function analyzed by Eclipse that contains such a SMAC indirect
branch. Highlighted instructions are those added by Eclipse’s
instrumentation; t and nt represent taken and not-taken edges
of conditional branches, respectively; arrows show control-flow
between basic blocks (e.g., .bb1 to .bb6).
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target: ...callq *%rcx

rax: unresolved
rflags: unresolved

rcx: target !!!
rax: unresolved
rflags: unresolved

rcx: target
rax: unresolved
rflags: unresolved

3 421

Register state

rax: unresolved
rflags: unresolved

cmpl $0x0, %rax

Register state Register state Register state

je no_call

(a) Execution state during SP on a non-hardened binary.

callq *%rcxor %r12, %rcxcmove %r11, %r12mov $0xff..ff, %r11mov $0x0, %r12

r12: 0 r11: -1
r12: 0

rax: unresolved
rflags: unresolved
r11: -1
r12: 0

rax: unresolved
rflags: unresolved
r11: -1
r12: 0

r12: unresolved
rax: unresolved
rflags: unresolved
r11: -1

rcx: unresolved
r12: unresolved
rax: unresolved
rflags: unresolved
r11: -1

rcx: unresolved
r12: unresolved
rax: unresolved
rflags: unresolved
r11: -1

1 2 3 4 5 6 7

Register state

cmpl $0x0, %rax je no_call

Register state Register state Register state Register state Register state Register state

(b) Execution state during SP on a Eclipse-hardened binary.

Figure 3: Execution state during a SP attack on a {non, Eclipse}-hardened binary. Regular execution is denoted with and
speculative execution is denoted with . Instructions that are present in both binaries are listed under the same column.

.bb2

.bb3

.bb4

.bb5

.bb1

.bb6

cmovne %r11, %r12
...
jne .bb4

nt t

nt

t

nt

t

...
je .bb3

...
ret

cmove %r11, %r12
cmovl %r11, %r12
...
or %r12, %rdx
jmp *%rdx

cmovne %r11, %r12
...
jge .bb5

mov $-1, %r11
mov $0, %r12
...
jmp *%rbx

ConditionalInPath

.bb2 -> .bb3 (t)

.bb3 -> .bb4 (nt)

.bb3 -> .bb5 (t)

.bb4 -> .bb5 (t)

SMACInstrs
.bb5

Figure 4: Control-flow graph of a Eclipse-instrumented func-
tion, and sets constructed by Eclipse analyses (§5.1). High-
lighted instructions are injected by Eclipse.

SMAC Indirect-branch Identification. Eclipse identifies and
collects all basic blocks within a given function into a set, called
SMACInstrs, if they contain SMAC indirect branches. To do so, it
iterates over every instruction, in each function of the analyzed
program, terminating when all instructions have been analyzed.
Whenever it encounters an indirect branch, Eclipse characterizes
it as an SMAC, if it can be speculatively executed as a result of a
(mis)predicted, preceding conditional branch (in the same function).
To determine whether an indirect branch in a basic block is SMAC,
Eclipse checks if the control-flow graph (CFG) of the function
remains connected when the block containing the indirect branch
is removed. This is done via a breadth-first traversal of the function’s
CFG, starting from the entry node and attempting to reach the exit
node without visiting the block containing the indirect branch.

If a path to the exit node can be found, it means that the CFG
is still connected, and the block containing the indirect branch
is added to SMACInstrs. In Figure 4, basic blocks .bb1 and .bb5
contain indirect branches. When Eclipse analyzes the function, it
does not add .bb1 to SMACInstrs, since if it is removed from the
CFG no possible paths will exist from the entry node (.bb1) to the
exit node (.bb6). This implies that the CFG is not connected when
.bb1 is removed, and thus .bb1 cannot be conditionally reached.
However, .bb5 is added to SMACInstrs, since when it is removed
from the CFG there exists at least one path from the entry to exit
node (e.g., .bb1→ .bb2→ .bb6).
Preceding Conditional-branch Identification. If, after the first
analysis step, the SMACInstrs set is empty, Eclipse does not in-
strument the function. Else, it reiterates the CFG and constructs
a second set, ConditionalInPath, containing the CFG edges of
basic blocks with a conditional branch that lie in the path from the
entry block to one of the blocks in SMACInstrs (i.e., the conditional
branches whose (mis)speculation can cause speculative execution
of the SMAC indirect branches). To construct this set, Eclipse
starts from each block in SMACInstrs and iterates the CFG back-
wards, visiting each edge to a predecessor block until it reaches
the entry block of the function. Whenever a block containing a
conditional branch is encountered during this traversal, Eclipse
adds the edge that was traversed to ConditionalInPath.

In Figure 4, Eclipse iterates backwards from .bb5—the sole
member of SMACInstrs—adding the taken edge of .bb2, both edges
of .bb3, and the taken edge of .bb4 to ConditionalInPath. The
not-taken edges of .bb2 and .bb4 are not added to the set, since
they are not visited when traversing the graph.
Required Information. The only information needed by Eclipse
to perform the aforementioned analysis is the predecessors and suc-
cessors of each basic block, within a function, and the basic blocks
containing indirect and conditional branches. This information can
be extracted at a late compilation stage, or by statically analyzing
the compiled binary itself. As a result, Eclipse is agnostic to the
source language of the binary.
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5.2 Instrumentation
After analyzing a given function to identify SMAC indirect branches
and their preceding conditional branches, Eclipse applies its in-
strumentation that prevents SMAC indirect branches from specula-
tively dereferencing attacker-controlled pointers. This is achieved
by propagating artificial data dependencies from the conditional
branches in ConditionalInPath to the code pointers used by the
indirect branches in SMACInstrs. Specifically, Eclipse injects in-
structions that: (a) capture the data dependencies causing the con-
ditional branches to be (mis)speculated; and (b) link these depen-
dencies to the code pointers dereferenced by the indirect branches.
Register Initialization. Eclipse injects two move instructions
in the entry block of a vulnerable function, as seen in the high-
lighted code of .bb1 in Figure 4. These instructions initialize two
general-purpose registers, r11 and r12, with the values −1 and 0,
respectively. r12 is referred to as the state register and is reserved to
propagate the data dependency from a given conditional branch to
a code pointer invoked by a conditionally-reached indirect branch.
Initializing the state register with 0 ensures that the behavior of
the program remains unaltered during non-speculative execution
(§6.1). The other register, r11, is referred to as the poison register,
and it is used to ensure SMAC code pointers are poisoned when
transient execution occurs (§6.2).
Capturing Data Dependencies. To capture data dependencies,
Eclipse iterates each edge in the ConditionalInPath set and in-
struments the destination block of the edge (i.e., the successor of
the block containing the conditional branch) with a conditional
move (cmov) placed at the start of the block. The poison and state
registers are used as the source and destination operands of the
conditional move, respectively. Since both conditional moves and
branches implicitly rely on the rflags register to determine their
outcome, the injected conditional move effectively captures the data
dependency and propagates it over to the state register. To deter-
mine the appropriate conditional code for the injected conditional
move, Eclipse inspects the type of edge (i.e., taken or not-taken),
as well as the conditional code of the conditional branch; if the
edge is taken, Eclipse selects the opposite conditional code to the
one in the conditional branch, else it selects the same code as the
branch. This guarantees that the instrumentation does not alter the
non-speculative execution of the program (§6.1).

In the example in Figure 4, Eclipse selects the opposite condi-
tion of the conditional branch in .bb2 for the conditional move
injected in .bb3 (i.e., “equal” → “not equal”) since the edge type is
taken. Additionally, it matches the condition of the branch in .bb3
for the conditional move in .bb4 since the edge type is not-taken.
Finally, Eclipse injects two conditional move instructions in .bb5,
both having the opposite conditions of their respective conditional
branches, since .bb5 is the destination block for two taken edges
(from .bb3 and .bb4) in ConditionalInPath.
Linking Data Dependencies to Code Pointers. Lastly, Eclipse
links the captured data dependency from the state register to the
code pointers used by the SMAC indirect branches. To achieve
this, Eclipse iterates each block in SMACInstrs and injects an or
instruction right before the indirect branch, which uses the state
register as the source operand and the register used in the indirect
branch as the destination operand (.bb5 in Figure 4).

If the indirect branch dereferences a memory location, Eclipse
unfolds it (i.e., adds an extra instructionwhich loads the code pointer
from memory into a register) before linking the data dependency to
the register. Combined with the dependency-capturing conditional
moves, the dependency-linking or instructions effectively propagate
the dependency on the rflags register onto the code pointers used
by the SMAC indirect branches.

5.3 Applying Eclipse on ARM
Eclipse’s approach generalizes beyond both SP attacks and the
x86(-64) architecture, as long as the architecture provides instruc-
tions that can capture and link data dependencies to the data used
by the target SMAC instructions. In what follows, we describe how
Eclipsemitigates the ARM-specific PACMAN attack. (The process
for hardening against SP on ARM is almost identical.) To mitigate
PACMAN, Eclipse follows the process described in Section 5.1 to
identify and harden SMAC instructions.
SMAC Instruction Identification. For PACMAN, the SMAC in-
structions that need to be identified and hardened by Eclipse
are PA instructions (e.g., auti{a,b} [62], autd{a,b} [61], and
ldra{a,b} [64]). To construct the SMACInstrs set, Eclipse fol-
lows the process described in Section 5.1, but now looks for these PA
SMAC instructions instead of SMAC indirect branches. Similarly, to
construct the ConditionalInPath set, it looks for different types
of ARM conditional branches (i.e., b.cond, cbz/nz, and tbz/nz).
Instrumentation. In the same vein, to harden the identified SMAC
instructions, Eclipse follows the process described in Section 5.2,
but uses ARM instructions to capture and link the data dependencies.
An example of the instrumentation is presented in Figure 2b and
corresponds to the PACMAN-vulnerable snippet in Figure 2a. After
initializing the state register (x20; ln. 1 in Figure 2b), Eclipse uses
the conditional set mask (csetm) instruction with an appropriate
condition code (ln. 6; §5.2) to capture the dependencies. Finally,
Eclipse uses the orr instruction (ln. 10) to link the dependencies
to the pointers used by the SMAC PA instructions.
ARM-specific Design Choices. Even though the process followed
by Eclipse to mitigate SMA attacks in ARM and x86(-64) is funda-
mentally the same, the behavior of certain ARM instructions allow
for, or require, minor adaptations. First, the conditional set mask
instruction (csetm) used by Eclipse to capture data dependencies
sets all bits of the destination register to 1 (i.e., to the value −1)
when the chosen condition code is true [63], else it sets all bits
to 0, so Eclipse does not need to explicitly use a poison register.
Second, in cases where an identified conditional branch was either a
cbz/nz or a tbz/nz, Eclipse inserts an additional cmp instruction
before the branch in order to set the status register, which is implic-
itly read by csetm, since these conditional branches perform their
branch using register arguments and do not rely on reading the
status register. Lastly, according to ARM, implementations of the
architecture may allow data processing instructions (such as csetm)
to produce speculative values themselves [60]. When Eclipse is
applied to an ARM implementation that implements this behavior,
it injects an additional csdb instruction (ln. 7), which guarantees
subsequent instructions do not use such speculative values.
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5.4 Binary Verifier
Since Eclipse’s instrumentation is introduced at compile time, we
ensure that no modifications (i.e., reordering/elimination of the
injected code [116]) are made to the instrumentation in subsequent
compilation steps before the final binary is produced; such opti-
mizations could render Eclipse ineffective. To do so, we designed
a binary verifier which statically analyzes Eclipse-instrumented
binaries and ensures that the instrumentation is unaltered.

The verifier first disassembles a given binary and constructs the
CFG for each function. With the CFG, it reconstructs the SMAC-
Instrs and ConditionalInPath sets (§5.1) in order to identify the
necessary instrumentation points. To do so, it follows an approach
similar to Eclipse: for the SMACInstrs set, it adds every block
containing a SMAC instruction that can be conditionally reached;
and for the ConditionalInPath set, it iterates the CFG backwards,
starting from each block in the SMACInstrs set, and adds all edges
from blocks containing conditional branches that are in the path of
a SMAC instruction in the set.

Next, it verifies that each SMAC instruction in SMACInstrs is
properly instrumented. For each SMAC instruction in the set, it
checks that there exists a sequence of instructions starting with
a dependency-linking instruction (e.g., or), that links the data de-
pendency from its destination operand to the register used by the
subsequent SMAC instruction. Notably, the dependency-linking in-
struction does not necessarily need to directly precede the SMAC in-
struction; for example, we found Eclipse’s instrumentation against
SP for x86(-64) was occasionally modified to patterns such as:
or %r12, %rdx
mov %rdx, %rax
callq *%rax

These patterns are still considered valid instrumentation since the
code pointer (rax) is still data dependent on the state register (r12).
Finally, the verifier checks that the dependency-linking instruction
uses the reserved state register as its source operand.

After all instructions in SMACInstrs are verified, the verifier
goes through each edge in the ConditionalInPath set, verifying
that they have been properly instrumented. For each edge, it checks
that the destination block of the edge is instrumented with a condi-
tional move (for x86(-64)) or conditional set mask (for ARM). Then,
it checks that the conditional move or set mask uses the proper
operands: the reserved state register for the destination register,
and, for conditional moves, a properly initialized poison register
(i.e., −1) for the source operand.

6 Security Analysis
The instrumentation introduced by Eclipse (§5.2) mitigates SMA
attacks by propagating data dependencies to data used by SMAC
instructions, aiming to prevent the latter from using the data during
speculative execution. In this section, we provide a detailed security
analysis of Eclipse’s instrumentation. We first walk through a run-
ning example and examine how the propagated data dependencies
influence the CPU’s state and prevent SP while being transparent
to the non-speculative execution of the program (§6.1). We also
resolve an edge case that can occur during out-of-order execution,
which allows an attacker to circumvent a naïvely implemented
mitigation (§6.2).

Similar to Section 5, we first focus on how Eclipse mitigates
SP, then we expand the analysis to PACMAN (§6.3). While we use
specific examples to make the analysis easier to follow, Eclipse’s
protection generalizes to all SMA attacks.

6.1 Eclipse-hardened Code Execution
Speculative Execution. We present a concrete example of how
the instrumentation introduced by Eclipse stops SP on x86(-64);
this example also applies to SP on ARM without loss of general-
ity. A code snippet of a program hardened by Eclipse is shown in
Figure 1b, corresponding to the vulnerable snippet in Figure 1a. Sim-
ilar to the attack example in Section 4.1, we step through program
execution during the attack and describe how Eclipse prevents
the CPU from speculatively dereferencing the corrupted function
pointer. We also present the register state during the (speculative
and non-speculative) execution of each instruction in Figure 3b.

First, in ln. 1–2, the state and poison registers (§5.2) are initial-
ized ( 1 and 2 in Figure 3b). Next, the CPU tries to execute the
compare instruction (cmpl) at ln. 4, which, if executed, will implic-
itly change the value of the rflags register; however, the compare
instruction cannot yet be executed since the value of rax is cur-
rently unresolved ( 3 ). As a result, the value of the rflags register
is now also unresolved, and the CPU speculates on the outcome of
the conditional branch in ln. 5 ( 4 ). Since the branch predictor is
(mis)trained, the CPU speculates that the branch is not taken.

The CPU now attempts to speculatively execute the conditional
move (cmove) at ln. 6 ( 5 ); however, the conditional move is also
data dependent on the rflags register. Thus, the (unresolved) data
dependency is now captured by the conditional move and propa-
gated onto the state register—i.e., since the conditional move cannot
yet be executed, the value of the state register cannot yet be re-
solved. Finally, the CPU tries to execute the or instruction injected
by Eclipse on ln. 8 ( 6 ). Since the (currently unresolved) state
register is used as the source operand, this instruction cannot yet
be executed either. This or instruction links the data dependency to
the destination operand—i.e., the code pointer, rcx—which is deref-
erenced by the SMAC indirect branch on ln. 9. When (speculative)
execution reaches this indirect branch ( 7 ) the unresolved code
pointer cannot be speculatively dereferenced.

Effectively, Eclipse’s instrumentation propagates the (unre-
solved) data dependency that caused the CPU to speculate the
outcome of the conditional branch onto the (potentially corrupted)
code pointer. This prevents the indirect branch from speculatively
dereferencing the pointer until the data dependency is resolved,
which also resolves the correct outcome of the conditional branch.
Non-speculative Execution. The instrumented code produced by
Eclipse is transparent to the concrete execution of the program.
The condition codes chosen by Eclipse for the injected conditional
move instructions (§5.2) ensure the move is not performed during
concrete execution. Consequently, the injected or instructions will
never alter the architectural value of the code pointer.

From the example in Figure 1b, when execution reaches the
conditional branch (je) on ln. 5, there are two possible outcomes,
either: (a) the condition is true and the jump is taken, jumping over
the instrumented code; or (b) the condition is false and the program
continues executing the conditional move on ln. 6.
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If the conditional move is executed, it is guaranteed that the
condition was false, else the jump is taken and skips over the in-
structions at ln. 6–9. Since the conditional move is injected on
the conditional branch’s not-taken edge, and the condition code
matches that of the conditional branch, the move will not be per-
formed, and the state register will remain 0. Finally, the or instruc-
tion on ln. 8 will not alter the value of the code pointer, since the
state register contains the value 0. Thus, the indirect branch on
ln. 9 will dereference the unaltered architectural value of the code
pointer in the rcx register.

6.2 Poisoning the Code Pointer
Eclipse considers an important edge case that can occur during
the attack: after rflags is resolved, the CPU may execute the con-
ditional move (ln. 6 in Figure 1b) and subsequent instructions before
executing the conditional branch (ln. 5) due to out-of-order execu-
tion [41]. This gives a window for the attacker-controlled pointer
to be dereferenced (ln. 9) before the conditional branch is executed
and the speculatively executed instructions are squashed.
Out-of-order Execution Measurements.We performed an ex-
periment demonstrating the aforementioned scenario. Namely, we
constructed a program that resembles a Eclipse-hardened SP code
pattern, but, instead of (speculatively) dereferencing a code pointer,
it accesses a memory location which leaves a signal at a distinct
cache location, as seen in the snippet below:

1 mov $addr_a, %rax
2 mov $addr_b, %rbx
3 ...
4 je .end
5 cmove %rbx, %rax
6 mov (%rax), %rcx
7 .end
8 ...
9 /* Measure cache signal */

We set up the program so the conditional move and memory access
at ln. 5–6 are speculatively executed. Then, we performed cache
measurements to check whether addr_a or addr_b get cached.

While running this experiment, we detected cache signals at
addr_b, indicating that the conditional move and memory access
were executed. Since the rax register—holding the value of the
accessed memory location—is data dependent to rflags, the in-
structions could not have executed during speculative execution.
As such, we deduce that the instructions were executed because of
out-of-order execution, as described above.
Preventing Out-of-order Dereferences. Eclipse prevents the
value of the code pointer from being dereferenced when the afore-
mentioned scenario occurs by ensuring that the pointer becomes
poisoned. Under speculation, the injected conditional moves act
opposite to their behavior in concrete execution, moving the poison
value (−1) to the state register and subsequently causing the or
instructions to alter the value of the code pointer.

Using the example in Figure 1b, we now assume that the com-
pare instruction at ln. 4 has been architecturally executed and has
resolved the value of the rflags register. The CPU then chooses
to (incorrectly) execute the conditional move instruction at ln. 6
instead of executing (and taking) the conditional branch at ln. 5.

However, since the conditional branch should have been taken,
the condition relating to both the conditional branch and the condi-
tional move is true. As a result, the move will be performed, effec-
tively poisoning the state register with the value −1 (0xffff...-
ffff). Consequently, the or instruction at ln. 8 will alter the value
of the code pointer in rcx, setting it to −1. Finally, the indirect
branch on ln. 9 will try to dereference address −1 instead of the
address that is architecturally held in the pointer.

To summarize, even if the value of the code pointer is controlled
by the attacker, Eclipse guarantees that the value is altered to −1
before it is dereferenced during out-of-order execution, preventing
the attack from succeeding.

6.3 Eclipse-hardened PACMAN Analysis
Eclipse’s protection applies to PACMAN in a fundamentally sim-
ilar fashion. The only differences are: (a) the SMAC instructions
the data dependency is linked to and (b) the instructions used. An
Eclipse-hardened PACMAN snippet corresponding to the vulner-
able snippet in Figure 2a can be seen in Figure 2b.

Assuming the value of x9 is unresolved, the cmp instruction (ln. 3)
cannot yet execute. Because of the now-unresolved status register,
the CPU speculates the outcome of the conditional branch (ln. 4).
Next, the Eclipse-injected csetm instruction (ln. 5, optionally com-
bined with the csdb in ln. 6; §5.3) propagates the dependency on the
unresolved status register onto the state register, x20. As a result,
the orr instruction (ln. 9) cannot be executed either, preventing the
subsequent authentication instruction (ln. 10) from authenticating
the pointer during speculative execution.

During non-speculative execution, the csetm will set all bits of
the x20 status register to 0, ensuring that the orr instruction will
not modify the value of the pointer to be authenticated. Finally, the
instrumentation protects against the out-of-order execution sce-
nario (§6.2) since the csetm instruction will set all bits of the status
register to 1 because of the matching condition code, and the orr
instruction will alter the value of the pointer to be authenticated.

7 Implementation
We implemented Eclipse for the x86-64 architecture as an LLVM
(v11) machine-function pass in ≈1100 lines of C++ code. The pass
runs right before the register allocation phase of the compiler’s
pipeline. We chose to implement Eclipse late in the compiler opti-
mization pipeline to ensure that subsequent optimizations modify
the injected instructions as little as possible. Also, we chose to im-
plement it before the register allocation phase, such that we could
reserve a general-purpose register to be used as the state regis-
ter (§5.2). For ARM, we injected Eclipse’s instrumentation using
inline assembly for the evaluated programs.

The verifier (§5.4) was implemented using the Egalito [115] bi-
nary rewriting tool in ≈550 lines of C++ code—currently, it supports
verifying binaries compiled from C code only. To ensure that any
potential bugs in the implementation or logic of the LLVM pass did
not transfer over to the verifier, a graduate student was provided
with information regarding Eclipse’s instrumentation and tasked
with implementing the verifier independently—i.e., the developer
of the LLVM pass and the verifier were separate people.
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8 Evaluation
We evaluated the performance of our Eclipse prototype on x86-64
only—our ARM implementation is not mature enough to support
fully instrumenting applications. Specifically, we used a set of user-
land applications and the Linux kernel. For userland, we performed
benchmarks using the SPEC CPU 2017 suite, as well as real-world
applications. For the kernel, we performedmicro-benchmarks using
the LMbench suite [74] and macro-benchmarks using the Phoronix
Test Suite (PTS) [89]. We also assessed Eclipse’s security effective-
ness on both x86-64 and ARM. For x86-64, we deployed Eclipse
against an SP [37] attack on the Linux kernel; for ARM, we de-
ployed Eclipse in the kernel and userland to defend against a
PACMAN [93] and an SP attack, respectively.
x86-64 Testbed. We ran our performance experiments for x86-
64 on a machine with a 16-core Intel Xeon W-2145 3.70GHz CPU
and 64GB of RAM. The userland benchmarks were executed in-
side Docker [75] containers configured to use all available CPUs
and RAM. The container(s) for the SPEC CPU 2017 benchmarks
ran Void Linux [8], while the ones for the real-world benchmarks
ran Alpine Linux [9]. Moreover, the benchmarked applications
were linked against musl libc [4], built as position-independent
(-f{PIC, PIE}, -pie), and optimized with -O2. The kernel bench-
marks ran atop a Debian v11 system using Linux kernel v5.4.256. For
all benchmarks, the CPU was configured to always run at 3.70GHz
in the C0 C-state (i.e., fully activated) with SMT enabled and dy-
namic frequency and voltage scaling (DVFS, Turbo Boost) disabled,
in order to reduce noise and promote reproducibility.
ARM Testbed. The ARM experiments were performed on an Ap-
ple MacBook Pro, equipped with an Apple M2 CPU and 16GB of
RAM, running Darwin v23.2.0 with the XNU kernel v10002.61.3,
patched [91] to allow the use of high-resolution timers in userland.

8.1 Userland Performance
We evaluated the performance overhead introduced by Eclipse on
instrumented userland applications, and compared against two al-
ternative mitigation approaches, described below. We benchmarked
the C/C++ programs included in the SPEC CPU 2017 suite, as well
as four real-world applications, namely Redis (v7.2.4) [6], Nginx
(v1.26.0) [5], SQLite (v3.45.3) [7], and MariaDB (v10.11.7) [3]. The ra-
tio of the total SMAC indirect branches (over all indirect branches)
for each real-world application and evaluated SPEC CPU 2017
benchmark (including their dependencies) is presented in Table 2.

8.1.1 Alternative Mitigations. We compared the performance over-
head of Eclipse against alternative approaches for mitigating SP
attacks on x86(-64), specifically, using lfence and SLH.
LFENCE. One alternative approach to Eclipse is injecting seri-
alizing instructions, such as lfence [48], prior to SMAC indirect
branches, completely stopping speculative execution. To demon-
strate this, we implemented a variant of Eclipse, dubbed Eclipse-
lfence, to compare against. To implement Eclipse-lfence, we
modified our instrumentation (§5.2) to only inject an lfence in-
struction before each SMAC indirect branch in the SMACInstrs set,
instead of artificially propagating data dependencies to the code
pointers used by the branches. (Note that Eclipse-lfence is not
an out-of-the-box approach as it relies on Eclipse to identify the
SMAC indirect branches that must be hardened.)

SLH. An alternative, out-of-the-box approach to mitigating SP is
Speculative Load Hardening (SLH) (§2.3) with indirect branch hard-
ening enabled via the compile-time flag: -x86-slh-indirect=true.
Since SLH is designed specifically to mitigate Spectre-PHT attacks,
this option can only be enabled atop the main functionality of
SLH (i.e., hardening all memory-load instructions following condi-
tional branches). In contrast, Eclipse focuses solely on mitigating
SP—and hence hardens only SMAC indirect branches—significantly
reducing the number of instrumentation points.

8.1.2 SPEC CPU 2017. We evaluated the performance overhead
of the three approaches on the C/C++ integer and floating point
benchmarks in the SPEC CPU 2017 suite. Table 1 presents the av-
erage performance overhead across 5 runs of the ref workload,
presented as percentages atop an uninstrumented baseline. (≈0%
corresponds to < 0.1%.) Overall, Eclipse outperforms the other
two approaches in the majority of the benchmarks, incurring over-
heads ranging from ≈0%–9.53%. Eclipse-lfence incurs higher
overheads compared to Eclipse overall, ranging from ≈0%–26.73%.
SLH performs consistently worse than the other two approaches,
incurring large overheads ranging from 2.62%–154.36%.

We observe that for 600.perlbench_s, 619.lbm_s, 631.deep-
sjeng_s, and 638.imagick_s the Eclipse-lfence approach out-
performs Eclipse, with a negligible difference (< 0.5%) in 3/4 cases.
Eclipse injects more instructions in the binary: indirect branches
are masked with an or instruction and conditional moves are in-
serted at the edges of preceding conditional branches. Further, it
reserves a general-purpose register (§5.2), which increases register
pressure in the program, causing more memory spills. On the other
hand, Eclipse-lfence only inserts one instruction (i.e., lfence)
per SMAC indirect branch. When an lfence is inserted in a block
containing a large number of instructions, the performance penalty
is larger, since it prevents speculative execution of all the instruc-
tions past the lfence. Thus, when the basic block contains a small
number of instructions, the cost of stopping speculation is lower,
and the extra instructions and register pressure introduced by
Eclipse can dominate the performance benefits gained from not
completely preventing speculation. A hybrid scheme incorporating
both speculation barriers and Eclipse instrumentation could prove
an interesting performance optimization. (We leave as future work
the study of such a hybrid prototype.)

8.1.3 Real-world Applications. We further evaluated the perfor-
mance overhead of the mitigations on four real-world applications:
SQLite, Redis, Nginx, and MariaDB. The configuration parameters
for applications and benchmark drivers were tuned in order to
achieve maximum CPU utilization, and all benchmarked applica-
tions and drivers were run on the same host. We performed 10
iterations of each benchmark and report the averages in Table 3.
SQLite.We evaluated SQLite using the Speedtest [103] benchmark:
an in-tree part of SQLite compiled into the main binary specifically
designed for performance testing. To ensure that our evaluation
only contained the overhead incurred by the main sqlite appli-
cation and not the Speedtest benchmark driver, we explicitly an-
notated the Speedtest-specific functions with compiler attributes
which instruct the compiler not to apply Eclipse instrumenta-
tion. Additionally, we configured the binary to use an in-memory
database to minimize I/O and maximize CPU utilization.
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Table 1: SPEC CPU 2017 performance results.

Benchmark Eclipse Eclipse-lfence SLH

600.perlbench_s 4.31% 4.26% 50.82%
602.gcc_s 0.74% 0.76% 49.74%
605.mcf_s 6.52% 26.73% 58.59%
619.lbm_s 0.42% 0.35% 2.62%
620.omnetpp_s 9.05% 22.94% 33.49%
623.xalancbmk_s 8.49% 11.69% 154.36%
625.x264_s 3.85% 10.67% 26.58%
631.deepsjeng_s 0.23% 0.19% 31.49%
638.imagick_s 9.53% ≈0% 97.74%
641.leela_s 1.21% 1.23% 20.03%
644.nab_s 0.29% 0.72% 31.36%
657.xz_s ≈0% 0.13% 54.26%

Table 2: SMAC instructions ratio in userland applications.

Benchmark # SMAC ind. branches / # Total ind. branches

SQLite 29,152/51764 (56.32%)
Redis 6137/12348 (49.70%)
Nginx 12,261/24489 (50.07%)
MariaDB 90,006/181774 (49.51%)

600.perlbench_s 553/1136 (48.68%)
602.gcc_s 9223/13433 (68.66%)
605.mcf_s 219/446 (49.10%)
619.lbm_s 183/382 (47.91%)
620.omnetpp_s 9728/20654 (47.10%)
623.xalancbmk_s 32,794/63431 (51.70%)
625.x264_s 1915/2992 (64.00%)
631.deepsjeng_s 2427/4926 (49.27%)
638.imagick_s 2886/5406 (53.39%)
641.leela_s 2463/5004 (49.22%)
644.nab_s 186/388 (47.94%)
657.xz_s 260/539 (48.24%)

The benchmark completes 8.61% slower, on average, when hard-
enedwith Eclipse, outperforming Eclipse-lfence and SLH,which
incur a 12.72% and 55.11% slowdown, respectively.
Redis.We benchmarked Redis using memtier [95]: a tool designed
for benchmarking NoSQL key-value databases. We configured mem-
tier to use 3 threads with 8 clients per thread, each sending SET
and GET requests for a 32-byte object in a 1:10 ratio over 1 minute.
Additionally, Redis was configured to use a single I/O thread. The
throughput degradation is identical for SET and GET requests and
is negligible for Eclipse, while Eclipse-lfence and SLH incur
0.17% and 3.20% degradation, respectively.
Nginx. We benchmarked Nginx using wrk [2]: an HTTP bench-
marking tool. We configured wrk to generate HTTP requests over
1minute using 8 threads each making 512 simultaneous HTTP con-
nections. We ran the benchmark three separate times, with Nginx
serving 1KB, 100KB, and 1MB file sizes in each iteration. Nginx was
configured to use 8, 3, and 3 threads for the 1KB, 100KB, and 1MB
benchmarks, respectively, to achieve maximum CPU utilization.
Eclipse has the lowest throughput degradation for the 1MB file
size, at 0.42% and 3.28%, and is slightly outperformed by Eclipse-
lfence for the 1KB and 100KB file sizes (1.00% vs 0.67% and 0.65%
vs 0.10%, respectively). SLH has the highest degradation across all
file sizes, ranging from 2.00% (1KB) up to 3.73% (100KB).

Table 3: Real-world applications performance results.

Application Eclipse Eclipse-lfence SLH

SQLite 8.61% 12.72% 55.11%
Redis (GET/s) ≈0% 0.17% 3.20%
Redis (SET/s) ≈0% 0.17% 3.20%
Nginx (1KB) 1.00% 0.67% 2.00%
Nginx (100KB) 0.65% 0.10% 3.73%
Nginx (1MB) 0.36% 0.78% 3.52%
MariaDB 0.42% 1.60% 10.16%

Table 4: LMbench micro-benchmark results.

Benchmark Eclipse Overhead

La
te
nc
y

getpid() 0.72%
open()/close() 2.79%
read()/write() ≈0%
select(100 fds) 7.73%
select(100 TCP fds) 6.04%
stat() 2.16%
mmap()/munmap() 2.32%
fork()+exit() 1.10%
fork()+exec() 0.82%
fork()+/bin/sh 0.26%
Install signal ≈0%
Handle signal 0.93%
Protection fault 0.71%
Page fault ≈0%
Pipe I/O 4.88%
UNIX socket I/O 7.95%
TCP socket I/O 2.12%
UDP socket I/O 6.86%
Context switch 4.93%
File creation 1.17%
File deletion 3.53%

Ba
nd

w
id
th File I/O 0.92%

mmap() I/O 0.97%
Pipe I/O ≈0%
UNIX socket I/O 3.04%
TCP socket I/O 2.41%

MariaDB.We benchmarked MariaDB using the oltp_read_write
benchmark from the sysbench [1] tool. We ran the benchmark for
5 minutes on a table containing 2-million entries, using 6 worker
threads. Eclipse incurs the lowest overhead at 0.42%, outperform-
ing both Eclipse-lfence (1.60%), and SLH (10.16%).

8.2 Kernel Performance
We also evaluated the overhead introduced by Eclipse on the Linux
kernel (v5.4.256), using a set of micro-benchmarks (LMbench [74])
and macro-benchmarks (PTS [89]).
LMbench.Wemeasured the latency overhead incurred by Eclipse
for various kernel operations, such as: (a) performing system calls
(e.g., read()/write(), stat(), etc.), (b) installing and catching sig-
nals, (c) creating processes, (d) page faults and protection faults,
(e) pipe and (TCP/UDP/UNIX) socket I/O, (f) context switching, and
(g) file creation and deletion. We also measured the bandwidth re-
duction for file I/O, (TCP/UDP) socket I/O, and pipe I/O. Results are
presented in Table 4. Overall, Eclipse’s latency overhead ranges
from ≈0%–7.95%, and its bandwidth degradation is < 3.04%.
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PTS. We evaluated the performance overhead introduced by an
Eclipse-instrumented kernel on various real-world applications
and workloads, including a web server (Nginx), a database (Mari-
aDB), a deep-learning framework (TensorFlow), a Linux kernel
build, kernel benchmarks using perf-bench, and benchmarks for
OpenSSL and GNU libc. Eclipse incurs negligible overhead on
all benchmarks (< 2%).

8.3 Security Evaluation
In addition, we assessed Eclipse’s effectiveness in mitigating SMA
attacks on both the x86-64 and ARM architectures.
x86-64. To evaluate whether Eclipse successfully protects against
SP attacks on x86-64, we apply our prototype to the Linux ker-
nel and demonstrate that our instrumentation successfully blocks
the original BlindSide [37] attack that de-randomizes KASLR. We
created a vulnerable environment by forward-porting CVE-2017-
7308 [26]—the vulnerability used by the BlindSide [37] authors to
construct their proof-of-concept exploits—to kernel v5.4.256. Then,
we used the exploit by Göktas et al. [37] to carry out an SP attack
against the kernel to de-randomize KASLR. In short, the exploit
works similar to the SP example described in Section 4.1: it leverages
a heap buffer overflow to overwrite a function pointer in a socket
structure, which the attacker subsequently uses to speculatively
probe for the base address of the kernel image. By running the
exploit on an uninstrumented kernel, we were able to successfully
locate the base address of the kernel (i.e., we detected signals in the
cache when “guessing” the kernel’s base address), de-randomizing
KASLR. After applying Eclipse’s instrumentation to the kernel,
we could no longer observe any signal(s) in the cache while specu-
latively probing, verifying that our defense is effective.
ARM. We evaluated Eclipse’s effectiveness in mitigating both
the (ARM-specific) PACMAN attack and SP on ARM. To evalu-
ate Eclipse’s effectiveness against PACMAN, we used the orig-
inal proof-of-concept exploit publicly provided by the paper au-
thors [92]. The exploit creates a vulnerable kernel extension con-
taining a PACMAN gadget, which is used by the exploit to carry
out a PACMAN attack and leak the PAC of a kernel pointer from
userland. Since the exploit targets the M1 processor, we made slight
modifications to adapt it to our M2 processor (i.e., adjusting for the
different cache sizes in M2) and verified that the exploit success-
fully leaks the PAC. After applying Eclipse’s mitigation on the
vulnerable kernel extension, the exploit is no longer able to leak
the PAC (i.e., we observe no cache signals).

Since there are no publicly available SP exploits against ARM, we
developed a proof-of-concept, userland SP exploit that works similar
to the SP attack described in Section 4.1 (i.e., it contains a SMAC
indirect branch preceded by an attacker-controlled conditional
branch). To carry out the attack, we first train the conditional
branch predictor, then corrupt the pointer dereferenced by the
SMAC indirect branch with the address of a function that accesses
a pre-defined memory location, leaving a traceable signal in the
cache. Without Eclipse, we are able to measure clear cache hits,
indicating that the corrupted pointer is speculatively dereferenced.
When applying Eclipse, we were unable to measure cache hits.

9 Discussion
9.1 Other SMA Attacks
While Eclipse is effective at mitigating SMA attacks such as SP
and PACMAN on the x86(-64) and ARM architectures, its design
is generic and our implementation can be adapted to other SMA
attacks. For example, Eclipse can mitigate the attack against GCC
VTV described in SPEAR [72] by introducing a data dependency
between the comparison that verifies a virtual table pointer belongs
to a valid set and its subsequent dereference. Additionally, Eclipse
can be adapted to other architectures if they provide instructions
that can capture and link data dependencies.

9.2 Binary Verifier
Although the binary verifier (§5.4) did not discover any cases of the
compiler breaking (i.e., insecurely modifying) the instrumentation,
it did uncover a bug in the x86(-64) SP implementation of Eclipse.
Specifically, our implementation would only instrument the first
indirect branch in SMACInstrs (§5.1), and any subsequent branches
in the set would not get instrumented with an or instruction. The
verifier was able to identify this since, during its analysis, it detected
indirect branches in its re-constructed SMACInstrs set that were
not preceded by an or instruction.

9.3 Limitations
Inter-procedural Hardening. Eclipse currently performs intra-
procedural analysis and hardening. It is complete in terms of intra-
procedural analysis, meaning it will identify all SMAC instructions
within a single function. Occasionally, however, certain code pat-
terns that span multiple functions may enable SMA attacks. For
example, in SP, an attacker may be able to execute a direct branch to
another function that contains an indirect branch, which gets spec-
ulatively executed. In current literature, inter-procedural analysis
(or hardening) is considered in two cases. First, BlindSide [37] per-
forms an inter-procedural SP gadget analysis. However, the analysis
uses a conservative definition of control-dependent (i.e., SMAC)
indirect branches and is thus unclear whether the results are com-
plete inter-procedurally. Second, SLH [21] provides a mechanism
for propagating state inter-procedurally, but it still does not per-
form any inter-procedural analysis to determine whether a function
should be hardened; it simply hardens a function iff it contains
memory loads. Thus, a more precise analysis is required to correctly
identify inter-procedural SMAC instructions, (e.g., by following di-
rect branches that are conditionally executed and hardening any
encountered SMAC instructions). We leave this for future work.
Return Address Protection. Eclipse does not support hardening
return instructions—current literature has not demonstrated SMA
attacks that can be carried out using return instructions as SMAC
instructions. Nonetheless, there are two adjacent cases worth con-
sidering. First, it may seem possible that SP can be carried out using
return instructions; however, this attack variant would introduce
additional complexity, potentially rendering it infeasible. Even if an
attacker corrupts an address used in a conditionally-executed return
instruction, they would further need to “re-corrupt” the address
back to a valid address, else a crash will occur when the function
(eventually) concretely returns using the corrupted address.
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Second, the attack against LLVM’s SSP (shown in SPEAR [72])
also appears related to return instructions. However, the goal of this
attack is to delay the canary check and perform speculative ROP
(via a corrupted return address) for one iteration, after which the
process terminates. Hence, this attack cannot be used to perform
SP, and we consider it orthogonal to SMA attacks. If future studies
demonstrate that returns can be used to carry out SMA attacks,
Eclipse can be extended to support hardening return instructions.
Other Side-channel Attacks. Eclipse is oblivious to the specific
side channel that the attacker intends to use; because of Eclipse’s
instrumentation, during the attack, the SMAC instruction will not
use attacker-controlled data when executed, and thus no sensitive
data will be accessed or leaked via a specific side channel. Eclipse
does not mitigate any other speculative-execution-related attacks
(i.e., other than SMA attacks). Hence, users interested in protecting
against other side-channel attacks would need to combine Eclipse
with additional mitigations, potentially incurring higher overheads.

10 Related Work
Adapting SLH. Eclipse prevents SMA attacks by introducing
artificial data dependencies, borrowing ideas from SLH [21] and
applying them to a specific (narrow-scoped) domain. Prior studies
have explored extending SLH to provide stronger security guaran-
tees, or selectively applying SLH to remedy its performance over-
head. Patrignani and Guarnieri [85] show that SLH can still leak
data loaded non-speculatively, and thus extend SLH to mask the in-
puts of all instructions that load from memory. Ultimate SLH [119]
further extends SLH to apply it to variable-time arithmetic instruc-
tions. Oleksenko et al. [82] explore different instrumentations to
introduce data dependencies to mitigate Spectre v1 that do not use
conditional move instructions. Shivakumar et al. [102] implement
selective SLH, an improvement over SLH that selectively hardens
only values loaded into public variables. Marinaro et al. [73] in-
vestigate how the hardening introduced by SLH can be improved
when taking into account properties of the underlying microar-
chitecture of the system. Finally, Blade [110] applies SLH only on
select code patterns to improve performance, such as data-paths
from sources (secrets) to sinks (cache) in cryptographic code. In
antithesis, Eclipse focuses solely on SMA and requires identifying
and hardening the code patterns leveraged by such attacks.
Intel IBT. Indirect Branch Tracking (IBT) is part of Intel’s Control-
flow Enforcement Technology (CET) [25], a hardware extension
for Intel processors which provides control-flow transfer protec-
tion [33]. IBT provides protection for control-flow transfers by only
allowing a forward-edge transfer if it targets an endbr instruction.
Importantly, IBT stops control-flow transfers that do not target an
endbr, even during speculative execution, restricting an attacker’s
capabilities during an SP attack. However, IBT has two main disad-
vantages. First, it does not stop speculative execution of all indirect
branch targets, but only those not starting with an endbr. As a
result, an attacker can still carry out a SP attack by probing for
COP-like [35] gadgets that start with an endbr. Second, CET is only
available for Intel processors, and thus cannot prevent other SMA
attacks that target AMD or ARM processors. In contrast, Eclipse’s
approach is generic, does not require any platform-specific features,
and can be applied to many CPU architectures.

11 Conclusion
SMA allows an attacker to bypass memory-error mitigations and
leak sensitive program information by combining memory cor-
ruption with speculative execution. To mitigate this threat, we
introduced Eclipse: a compiler-based hardening scheme that stops
SMA attacks by propagating artificial data dependencies onto select
program data used during an attack. In short, Eclipse prevents
the CPU from using of attacker-controlled data during speculative
execution, providing protection while not disabling speculation en-
tirely, resulting in low performance overhead(s). We implemented
Eclipse as a compiler pass for x86-64 and demonstrate that our
design is both performant and effective. Eclipse incurs ≈0%–9.5%
overhead in the SPEC CPU 2017 benchmarks, < 8.6% in real-world
applications, and negligible overhead in the Linux kernel. For ef-
fectiveness, we applied Eclipse’s instrumentation to both x86-64
and ARM and show that it mitigates SMA attacks across both the
kernel and userland.

Availability
Our prototype implementation of Eclipse is available at:
https://gitlab.com/brown-ssl/eclipse
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