
Data-Oriented Differential Testing of
Object-Relational Mapping Systems

Thodoris Sotiropoulos, Stefanos Chaliasos, Vaggelis Atlidakis,
Dimitris Mitropoulos and Diomidis Spinellis

ICSE 2021
Distinguished Artifact Award

Object-Relational Mapping (ORM)

● Object-oriented interface on top of
relational databases

● Promotes
○ Portability
○ Developers’ productivity

● ORM frameworks are used by million
of applications (e.g., OpenStack,
Gitlab, Dropbox)

ORM bugs (Django example)

Django generates a syntactically invalid SQL
query with regards to MySQL

ORM bugs (peewee example)

Peewee generates a both syntactically and
semantically valid SQL.
However, the query produces the wrong results.

Expected SQL query

Test Oracle

We use differential testing for establishing a test oracle

Input

Implementation 1 Implementation 2 Implementation 3

10 20
10

Challenges

● Lack of a common specification and input language

● Non-deterministic query results

● DBMS-dependent results (see Django bug)

● Data generation (see peewee bug)

Approach

1. Schema Generation
2. Schema Setup
3. Abstract Query Generation
4. Concretization of Abstract Queries
5. Bug Detection

Abstract Query Language (AQL)

● Supports wide rage of operations
(through functional notation)
○ Filtering
○ Sorting
○ Aliasing
○ Folding
○ Compound expressions
○ Aggregate functions
○ Unions / Intersections

● Closer to ORM APIs rather than SQL
● AQL queries are generated randomly up

to a certain depth

Data Generation

An AQL query is encoded as an SMT formula

A theorem prover generates assignments from
which we derive executable INSERT statements

From AQL queries to ORM queries

● Use ORM-specific translators
● Each translator generates

○ The necessary boilerplate code (e.g.,
imports, db setup)

○ The actual ORM query
○ Code that prints results of the query

Implementation Details

● We implement our approach as a tool called Cynthia
○ Implemented in Scala (~9k LoC)
○ Cynthia uses the Z3 theorem prover

● Cynthia currently provides support for five popular ORMs
○ Django
○ SQLAlchemy
○ Peewee
○ Sequelize
○ Activerecord

● … and four DBMSs (Sqlite, MySQL, PostgreSQL, MS SQL Server)

Effectiveness

● Cynthia has found 28 bugs, of which
20 have been fixed.

● Most of the bugs have been
discovered in Django and
SQLAlchemy

● DBMS-dependent bugs (11 / 28)
● Most of DBMS-dependent bugs are

triggered when the code is run on
top of PostgreSQL and MSSQL

ORM Total Fixed Confirmed Unconfirmed

Django 10 6 3 1

SQLAlchemy 8 8 0 0

Sequelize 5 2 1 2

peewee 4 4 0 0

Activerecord 1 0 1 0

Total 28 20 5 3

Effectiveness of Solver-Based Data Generation

● We compared our solver-based approach with a
“naive” approach

○ I.e., generating random records without
considering the constraints of the generated
queries

● We spawned 20 testing sessions consisting of 100
AQL queries, and measured in how many queries
the ORMs returned empty results

● Unsatisfied Queries (Solver-based approach): 7.9%

● Unsatisfied Queries (“Naive” approach): 38%

● We get no improvement even if we generate more
records

○ generating 50 random records is the same
with generating 1000 random records

Conclusion
● Introduced the first data-oriented differential testing approach for

systematically testing ORM implementations
● We showed that differential testing can be also applicable to (seemingly)

dissimilar interfaces, such as ORMs
● We showed that compared with other simplistic approaches, our

solver-based approach enhances the bug detection capability, and is suitable
for differential testing

● Our tool, Cynthia, discovered 28 bugs, most of which have been fixed by
the developers.

● The effectiveness of Cynthia can be improved by considering
○ other forms of queries (e.g., write queries)
○ transaction management

Thank you

Tool: https://github.com/theosotr/cynthia

Artifact: https://doi.org/10.5281/zenodo.4455486

https://github.com/theosotr/cynthia
https://doi.org/10.5281/zenodo.4455486

Characteristics of Discovered Bugs

Type # Bugs All SQLite MySQL PostgreSQL MSSQL

Logic Error 12 11 0 0 0 1

Invalid
SQL

11 3 1 3 2 3

Crash 5 3 0 0 2 0

Total 28 17 1 3 4 4

● Most of the discovered bugs are logic errors (12 / 28)
● Followed by “Invalid SQL” bugs (11 / 28) and crashes (5 / 28)
● Almost all “logic errors” are DBMS-independent
● Yet, there is a large number of DBMS-dependent bugs (11 / 28)
● Most of DBMS-dependent bugs are triggered when the code is

run on top of PostgreSQL and MSSQL

Bug Detection

● We make DBMS-specific comparisons
● A bug is found when one of the following holds

○ Two ORMs produce different results on the same
DBMS.

○ An ORM query is successfully run on a specific
DBMS, but the same query written in another
ORM fails on the same DBMS.

Concretization of Abstract Queries

● Data Generation
● Translation of AQL query into a concrete ORM query

