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Software errors: Find them 
before they find you!

Reviewed approaches
● Test input generation
● Statistical error detection 
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Learning-based 
Program AnalysisTransfer Learning 

 & Multitask Learning
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Papers from three areas

Symbolic Execution & 
Fuzzing
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Symbolic execution & fuzzing

Symbolic 
execution

Fuzzing

Test input 
generation
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Symbolic 
execution

Fuzzing

Test input 
generation

Introduced in EFFIGY[1](1976)
● Execute on symbolic inputs

● Summarize classes of inputs

Symbolic execution 101
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Classic symbolic vs concolic execution

Symbolic 
execution

Test input 
generation

Classic 
symbolic 
execution

Concolic 
execution

Fuzzing
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Classic symbolic execution
● Maintain symbolic state

● Fork symbolic execution on branches

● Use solver

○ Branch feasibility

Concolic execution
● Maintain concrete & symbolic state

● Run concrete execution on taken branches

● Use solver

○ Cover not-taken branches

Classic symbolic vs concolic execution

➢ Implemented in EXE [2](2006) ➢ Implemented in DART [12](2005)
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Concrete 
state

   

void test_me(int x, int y){

     //naughty programmer
     z = x*x*x;
 
    if (z == y + 1)
            abort();
    else

    exit(0);
}

Symbolic 
state

Create symbolic 
variables: x=a, y=b

z=a*a*a

Random concrete    
values: x=1, y=1    

z=1

a*a*a != b + 1

Example

Path 
constraint
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Concrete 
state

   

void test_me(int x, int y){

     //naughty programmer
     z = x*x*x;
 
    if (z == y + 1)
            abort();
    else

    exit(0);
}

Symbolic 
state

Create symbolic 
variables: x=a, y=b

z=a*a*a

Random concrete    
values: x=1, y=1    

z=1

a*a*a != b + 1

Example

Path constraint: (a*a*a != b + 1)
Cannot solve

Path 
constraint
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Concrete 
state

   

void test_me(int x, int y){

     //naughty programmer
     z = x*x*x;
 
    if (z == y + 1)
            abort();
    else

    exit(0);
}

Symbolic 
state

Create symbolic 
variables: x=a, y=b

z=a*a*a

Random concrete    
values: x=1, y=1    

z=1

a*a*a != b + 1

Example

Path constraint: (a*a*a != b + 1)
Cannot solve
Simplify: a = 1 ↔ 1 != b + 1

Path 
constraint
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Concrete 
state

   

void test_me(int x, int y){

     //naughty programmer
     z = x*x*x;
 
    if (z == y + 1)
            abort();
    else

    exit(0);
}

Symbolic 
state

Create symbolic 
variables: x=a, y=b

z=a*a*a

New concrete    
values: x=1, y=0    

z=1

a*a*a != b + 1

Example

Path constraint: (a*a*a != b + 1)
Cannot solve
Simplify: a = 1 ↔ 1 != b + 1
Negate & solve: b = 0

Path 
constraint
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Concrete 
state

   

void test_me(int x, int y){

     //naughty programmer
     z = x*x*x;
 
    if (z == y + 1)
            abort();
    else

    exit(0);
}

Symbolic 
state

Create symbolic 
variables: x=a, y=b

z=a*a*a

New concrete    
variables: x=1, y=0    

z=1

a*a*a == b + 1

Example

Path 
constraint
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Concrete 
state

   

void test_me(int x, int y){

     //naughty programmer
     z = syscall(x)
 
    if (z == y + 1)
            abort();
    else

    exit(0);
}

Symbolic 
state

Create symbolic 
variables: x=a, y=b

z=a*a*a

New concrete    
variables: x=1, y=0    

z=1

a*a*a == b + 1

Example

Path 
constraint
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General limitations

● Handling complex constraints

● Environment problem

➢ Path explosion

Classic symbolic execution

Entire 
computation 

tree

Getting stuck 
here 
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What do we gain?

● Executions run to completion

➢ Path explosion still a problem

Getting stuck 
here

Entire       
computation    

tree

Concolic execution
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Concolic

Comparative view

Classic 
symbolic

App Mean number of 
instructions

#Test cases

Media 54M 2,266

Office 923M 3,008

Statistics from SAGE[19]

Coverage Number of 
COREUTILS 

tools

Avg. #ELOC 

100% 16 3307
90-100% 38 3958
80-90% 22 5013

COREUTILS tools statement coverage KLEE [3]
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Symbolic 
execution

Fuzzing

Test input 
generation

Classic 
symbolic 
execution

Concolic 
execution

System Type What’s new?

EXE[2] Symbolic Pioneer symbolic execution engine
KLEE[3] Symbolic Models environment

UC-KLEE[9] Symbolic Checks individual functions
CLOUD9[7] Symbolic Parallelization of symbolic execution
DART[12] Concolic Pioneer concolic execution engine
CUTE[13] Concolic Adds symbolic with pointers

PEX[5] Concolic Concolic execution in .NET
SAGE[19] Concolic Generational search on deep paths

CREST[15] Hybrid Concolic exec. & random testing
VERISOFT[8] Hybrid Concolic exec. & state merging

S2E[6] Hybrid Symbolic exec. w/ virtualization

Classic symbolic vs concolic execution



19

Fuzzing 101

Symbolic 
execution

Fuzzing

Test input 
generation

Classic 
symbolic 
execution

Concolic 
execution
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Fuzzing 101

Symbolic 
execution

Fuzzing

Test input 
generation

Classic 
symbolic 
execution

Concolic 
execution

Reliability of UNIX utilities[18](1990)
● Feed random inputs and monitor for errors 

● Easy to implement:

● Inputs that trigger incorrect behaviour are small 
fraction

$> while true; \
  > do head -n 10 /dev/urandom | a.out; \
  > done
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Fuzzing: mutation-based vs grammar-based

Symbolic 
execution

Fuzzing

Test input 
generation

Classic 
symbolic 
execution

Concolic 
execution

Mutation- 
based

Grammar-
based
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➢ American Fuzzy Lop (AFL)[23] Key points
● Coverage-guided search

● No assumptions for particular input 
format

● Hard branches (e.g., magic 
numbers) 

Mutants

Mutation-based fuzzing
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Key points
● Use grammar to describe input 

formats

● Good for structured input formats

➢ Writing grammar is labour-intensive, 
manual process

➢ SPIKE grammar-based fuzzer [24]

Grammar-based fuzzing

// Magic number -- don’t fuzz
static("89504E470D0A1A0A"); 
…
// Fuzz next bytes
block_start("Header"); 
fuzzable_byte(1);  // Width 
... 
block_end("Header”); 
...
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Learning-based fuzzing

Symbolic 
execution

Fuzzing

Test input 
generation

Classic 
symbolic 
execution

Concolic 
execution

Mutation-
based

Grammar-
based

Learning- 
based



➢ GLADE: Synthesizing program input grammars [25](2017)
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Learning-based fuzzing

Key points
● Start with an input sample

● Construct increasingly general regular 
expressions 

● Translate to Context Free Grammar

➢ Learning is slow
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Learning-based fuzzing

Key points
● Feed input samples and monitor 

taken/non-taken branches

● Use training data X,Y learn model for  
branching behavior

● Use model to perform gradient-guided 
mutations

➢ Unclear generalization to “never-taken” 
paths

Input  
samples (hex) Control flow of target 

program 

Edges 
bitmap

Training 
data X

Training 
data Y

➢ NEUZZ:  Fuzzing with Neural Program Learning [29](2018)



Characteristics GLADE [25] NEUZZ [29] SKYFIRE [27] RL Fuzzing [28] Learn & Fuzz [26]

Learns to 
model

Valid input    
format

Taken/non-taken 
branches

Valid input   
format

High reward 
mutation policy

Valid input         
format

Mutations Use grammar Use model’s 
gradients

Use grammar and 
AFL

Use learnt policy Use model’s 
predictions

Strength Fully blackbox Gradient-guided 
mutations

Semantic validity 
of test cases

End-to-end RL 
formulation

Location-specific 
mutation probabilities

Weakness Learning realistic 
grammars slow

Unclear 
generalization to 

unseen behaviors

Used a huge 
collection of input 

samples

Unclear quality of 
RL policy

Unclear benefit 
(production-optimized 

initial seeds)

Learning-based fuzzing
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Dynamic program analysis

Symbolic 
execution

Fuzzing

Classic 
symbolic 
execution

Concolic 
execution

Mutation-
based

Grammar-
based

Learning- 
based

Test input 
generation
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Statistical error detection

Correctness 
patterns

Quality 
metrics

Statistical 
error 

detection
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Correctness patterns

Correctness 
patterns

Quality 
metrics

Statistical 
error 

detection
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➢ DeepBugs [31](2017)

Key points
● Inconsistent but...which is correct?

● Most code is (hopefully) correct 

● Perform  transformations to create 
incorrect samples

➢ Need to come up with language-specific 
checkers

?

?

Correctness patterns
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Quality metrics

Correctness 
patterns

Quality 
metrics

Statistical 
error 

detection
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➢ Transfer Defect Learning [34](2013)

Key points
● Code quality metrics of known defects

● Predict if new files look defective

● General metrics ↔ reusable across new 
targets

➢ File-level reports

Quality metrics
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Comparative view

System Proxy for error 
detection

Source-target Transfer learning 
type

DeepBugs [31] Correctness 
patterns

Same N/A

Bugs as Deviant 
Behaviour [30]

Correctness 
patterns

Same N/A

Naturalness [32] Quality metrics Same N/A

TCA+ [34] Quality metrics Different Domain 
adaptation

Semi-supervised
Defect Prediction [33]

Quality metrics Different Inductive transfer 
learning
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Statistical error detection

Symbolic 
execution

Fuzzing

Test input 
generation

Classic 
symbolic 
execution

Concolic 
execution

Mutation-
based

Grammar-
based

Learning-
based

Correctness 
patterns Statistical 

error 
detection Quality 

metrics 

Automatic 
software error

finding
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Automatic software error finding

Symbolic 
execution

Fuzzing

Test input 
generation

Classic 
symbolic 
execution

Concolic 
execution

Mutation-
based

Grammar-
based

Learning-
basedAutomatic 

software error
finding

Correctness 
patterns Statistical 

error 
detection Quality 

metrics 
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