Automated Software Testing with Blackbox Fuzzing

Vaggelis Atlidakis

University of Southern California, Nov 2023, Invited Talk

Why software testing?

- U.S. companies lost > \$2 trillion in 2022 due to poor software quality¹
 ~10% of U.S. Gross Domestic Product (GDP)
- > Bugs found earlier are easier to fix
 - $\circ~$ A bug found in coding/unit testing takes ~3x less time to fix than in post-release^2 ~
- This talk: Automated software testing with blackbox fuzzing
- ➤ RESTler [ICSE '19]: Collaboration with Microsoft research
- > IvySyn [USENIX SEC '23]: Collaboration with Brown University

[1] "Cost of Poor Software Quality: A 2022 Report," Consortium for Information & Software Quality

[2] "Impact of Inadequate Infrastructure for Software Testing, 2022," National Institute of Standards & Technology

Why software testing?

- U.S. companies lost > \$2 trillion in 2022 due to poor software quality¹
 ~10% of U.S. Gross Domestic Product (GDP)
- Bugs found earlier are easier to fix
 A bug found in coding/unit testing takes ~3x less time to fix than in post-release²

This talk: Automated software testing with blackbox fuzzing

- ➤ RESTler [ICSE '19]: Collaboration with Microsoft research
- > IvySyn [USENIX SEC '23]: Collaboration with Brown University

[1] <u>"Cost of Poor Software Quality: A 2022 Report," Consortium for Information & Software Quality</u>

[2] "Impact of Inadequate Infrastructure for Software Testing, 2022," National Institute of Standards & Technology

What

- ➤ Test cloud services with REST APIs
- ➢ Find ``500 Internal Server Errors''

Why

- > Past approaches were not automated
- > Testing one API request each time

How: Stateful REST API Fuzzing

➤ Generate *stateful* sequences of API requests

Test example on GitLab¹

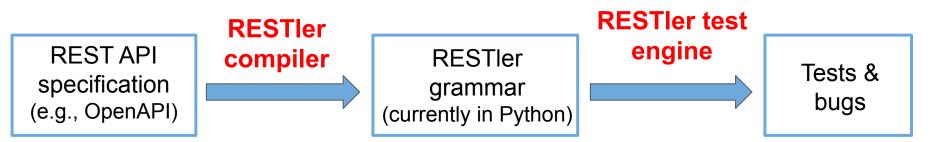
Delete a file from a project

- 1. Create a gitlab project
- 2. Create a file
- 3. Delete the file
- ➤ "500 Internal Server Error"

producer of: project-id

```
curl --request POST --header "PRIVATE-TOKEN: <your-token>" \
 --header "Content-Type: application/json" --data '{
     "name": "new_project", "description": "New Project", "path": "new_project",
     "namespace_id": "42", "initialize_with_readme": "true"}' \
 --url "https://gitlab.example.com/api/v4/projects/"
```


project-id: 13083


consumer of: project-id

producer of: file-name

"https://gitlab.example.com/api/v4/projects/13083.repository/files/app%2Fproject%2Erb"

consumer of: project-id, file-name file-name: app/project.rb
<pre>curlrequest DELETEheader 'PRIVATE-TOKEN: <your_access_token>' \</your_access_token></pre>
data '{"branch": "main", "author_email": "author@example.com", "author_name": "Firstname Lastname", "commit_message": " "}'\
"https://gitlab.example.com/api/v4/projects <mark>13083/</mark> repository/files app%2Fproject%2Erb"

- Identify producer-consumer relationships
- Generate code to parse responses

- Generate tests (state-space exploration)
- Drop invalid requests

Selected evaluation results

- > <u>Q1</u>: Do RESTler tests help increase code coverage?
- \succ <u>Q2</u>: Bugs found with RESTler?

Study subject: Gitlab

- Complex backend (> 350 KLOCs; mostly ruby-on-rails)
- > Hundrends of API endpoints
- Complex API request payloads

Deeper service exploration (Q1)

API Family	Total API Requests	Seq. Len.	Code Coverage (lines of code)	Tests
Gitlab	15 (*11)	1	598	1
Commits		2	1108	7
		3	🕇 1196	250
		4	1760	2220

Testing APIs with RESTIer (5h per API family)

 Longer sequences increase service-side code coverage

Deeper service exploration (Q1)

API Family	Total API Requests	Seq. Len.	Code Coverage (lines of code)	Tests
Gitlab	15 (*11)	1	598	1
Commits		2	1108	7
		3	1196	250
		4	1760	2220

Testing APIs with RESTIer (5h per API family)

- Longer sequences increase service-side code coverage
- Progress in large search space

Deeper service exploration (Q1)

API Family	Total API Requests	Seq. Len.	Code Coverage (lines of code)	Tests
Gitlab	15 (*11)	1	598	1
Commits		2	1108	7
		3	1196	250
		4	1760	2220

Testing APIs with RESTIer (5h per API family)

- Longer sequences increase service-side code coverage
- Progress in large search space
- Example: Testing for 5 hours
- Brute-force: 741 million sequences
- ➤ RESTIET: 2220 total test sequences
 - ✓ Producer-consumer request dependencies
 - ✓ Dynamic service feedback

Bugs found with RESTler (Q2)

Gitlab Bug [#50268]

- 1. Create a gitlab project
- 2. Create a file with a proper commit message
- 3. Delete the file with an empty commit message
- ➤ "500 Internal Server Error"

- ➤ Found 28 confirmed such bugs in Gitlab in 2018
- > ...and many more in production cloud services

RESTler since 2019

- ➤ Uncovered 100s of bugs in production Azure, Bing, and Office365 services
 - Including "severe critical bugs¹"
- Open-sourced at: <u>https://github.com/microsoft/restler-fuzzer</u>
- \succ Multiple teams are using it daily
 - Developer fuzzing
 - Specification correctness
 - Regression testing

[1] <u>https://patricegodefroid.github.io/research-overview.html</u>

Why software testing?

- U.S. companies lost > \$2 trillion in 2022 due to poor software quality¹
 ~10% of U.S. Gross Domestic Product (GDP)
- Bugs found earlier are easier to fix
 A bug found in coding/unit testing takes ~3x less time to fix than in post-release²

This talk: Automated software testing with blackbox fuzzing

- > RESTler [ICSE '19]: Collaboration with Microsoft research
- > IvySyn [USENIX SEC '23]: Collaboration with Brown University

[1] "Cost of Poor Software Quality: A 2022 Report," Consortium for Information & Software Quality

[2] "Impact of Inadequate Infrastructure for Software Testing, 2022," National Institute of Standards & Technology

What

> Find memory safety errors in Deep Learning (DL) frameworks

Why

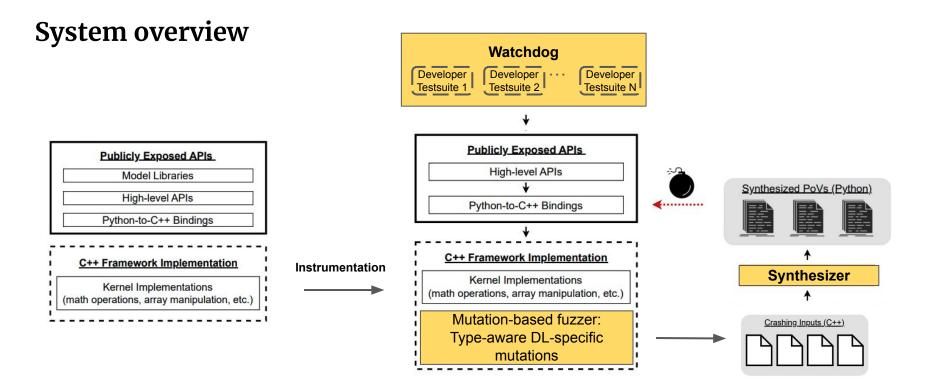
- > Core of DL frameworks is implemented in C/C++
- > Past approaches required manual effort and domain knowledge

How: A bottom-up approach

- > Find a crash in the native part
- Synthesize python code reproducing the crash

Example

Native (*kernel*) implementation

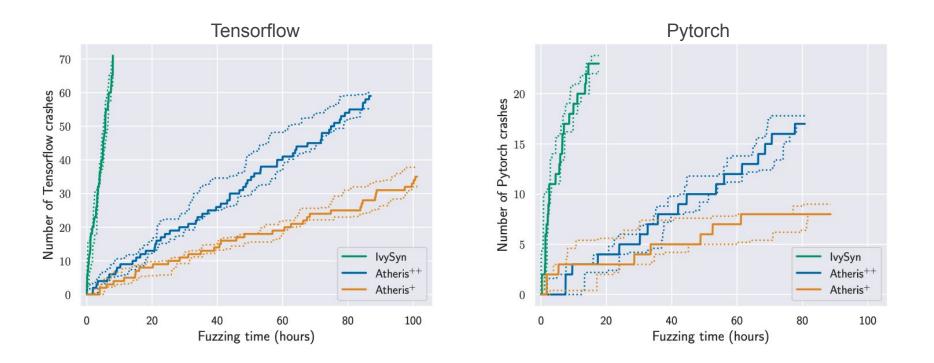

las	s EditDistanceOp : public OpKernel {
vo	id Compute (OpKernelContext* ctx) override {
11	
if	(g_truth == g_hypothesis) {
au	to loc = std::inner_product(g_truth.begin(),
	g_truth.end(), output_strides.begin(),
	<pre>int64_t(0));</pre>
OP_	REQUIRES (
	<pre>loc < output_elements,</pre>
	errors::Internal("")
out	put_t(loc) =
	gtl::LevenshteinDistance <t>(truth_seq,</t>
	hypothesis_seq, cmp);
11	

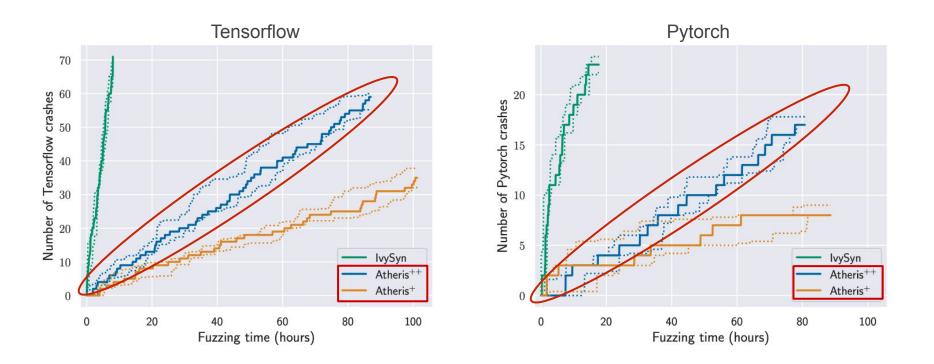
Triggers a crash

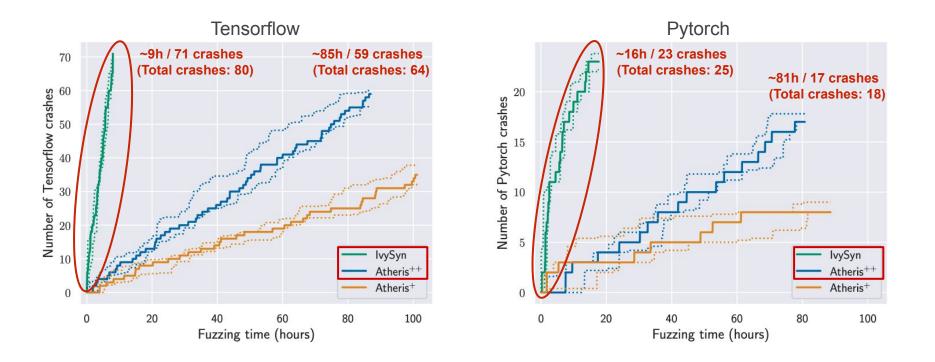
from public python APIs

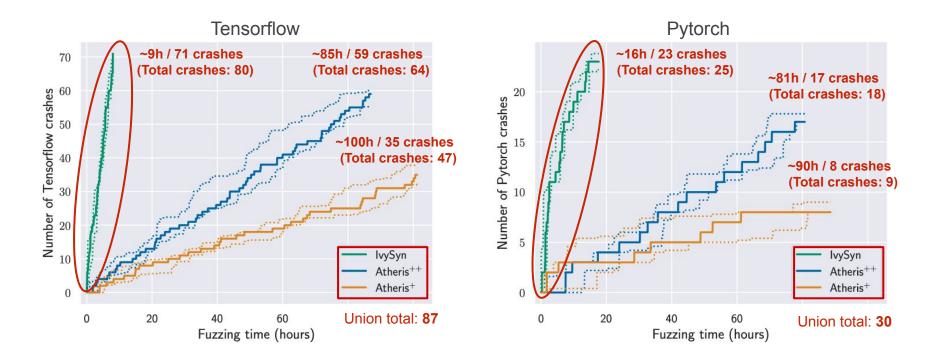
Proof-of-Vulnerability (PoV)

hypothesis_indices	=	tf.constant(-125099896764, shape=[3,3], dtype=tf.int64)		
hypothesis_values	=	<pre>tf.constant(0, shape=[3], dtype=tf.int64)</pre>		
hypothesis_shape	=	<pre>tf.constant(0, shape=[3], dtype=tf.int64)</pre>		
truth_indices	=	<pre>tf.constant(0, shape=[2,3], dtype=tf.int64)</pre>		
truth_values	=	tf.constant (-1879048192, shape=[2], dtype=tf.int64)		
truth_shape	=	<pre>tf.constant(2, shape=[3], dtype=tf.int64)</pre>		
tf.raw_ops.EditDis	tar			
hypothesis_ind hypothesis_val hypothesis_shap truth_indices truth_values truth_shape	ues			


Selected evaluation results


- \succ <u>Q1</u>: How quickly can IvySyn find crashes?
- > <u>Q2</u>: How effective is IvySyn in synthesizing PoVs?


<u>Target Frameworks</u>: Tensorflow¹ and Pytorch²


Against Google's Atheris³

- Atheris+: Default Atheris + automation
- Atheris++: Default Atheris + automation + type-aware
- IvySyn: Type-aware + DL-specific mutations
- [1] <u>https://www.tensorflow.org/</u>
- [2] <u>https://github.com/pytorch/pytorch</u>
- [3] https://github.com/google/atheris

Effectiveness in synthesizing PoVs (Q2)

Framework	Fuzzed Kernels	Unique Crashes	Synthesized PoVs
Tensorflow	412	103	86 / 103 (83%)
Pytorch	747	81	49 / 81 (60%)
All	1159	184	135 / 184 (73%)

- ➤ Synthesized 135 PoVs
- > Identified 61 previously-unknown vulnerabilities
- > Assigned with **39** new CVEs

https://gitlab.com/brown-ssl/ivysyn

Effectiveness in synthesizing PoVs (Q2)

Framework	Fuzzed Kernels	Unique Crashes	Synthesized PoVs
Tensorflow	412	103	86 / 103 (83%)
Pytorch	747	81	49 / 81 (60%)
All	1159	184	135 / 184 (73%)

- ➤ Synthesized 135 PoVs
- Identified 61 previously-unknown vulnerabilities
- Assigned with **39** new CVEs

https://gitlab.com/brown-ssl/ivysyn

import tensorflow as tf

import tensorii	
hypothesis_indices	s = tf.constant(-125099896764,
	<pre>shape=[3,3], dtype=tf.int64)</pre>
hypothesis_values	= tf.constant(0,
	<pre>shape=[3], dtype=tf.int64)</pre>
hypothesis_shape	= tf.constant(0,
	<pre>shape=[3], dtype=tf.int64)</pre>
truth_indices	= tf.constant(0,
	<pre>shape=[2,3], dtype=tf.int64)</pre>
truth_values	= tf.constant (-1879048192,
	<pre>shape=[2], dtype=tf.int64)</pre>
truth_shape	= tf.constant(2,
	<pre>shape=[3], dtype=tf.int64)</pre>
tf.raw_ops.EditDis	stance (
hypothesis_ind	lices = hypothesis_indices,
hypothesis_val	ues = hypothesis_values,
hypothesis_sha	ape = hypothesis_shape,
truth_indices	= truth_indices,
truth_values	= truth_values,
truth_shape	<pre>= truth_shape)</pre>
	ceOp : public OpKernel {
	CernelContext* ctx) override {
// if (g_truth == g	humathania) (
	inner_product(g_truth.begin(),
	<pre>output_strides.begin(),</pre>
int64_t{0});	. output_strides.begin(),
OP_REQUIRES (
ctx,	
0 <= loc &&	
loc < output	elements,
errors::Inter	rnal("")

Automated software testing with blackbox fuzzing

≻ RESTler [ICSE '19]

<u>Top-down approach:</u> Start from the APIs

≻ IvySyn [USENIX SEC '23]

Bottom-up approach: Start from native implementations

<u>RESTIer team:</u> Patrice Godefroid and Marina Polishchuk @ Microft Research <u>IvySyn team</u>: Neophytos Chrisou, Di Jin, and Vasilions Kemerlis @ Brown University Baishakhi Ray @ Columbia University